Skip to main content
Log in

Orlicz Extensions of Brunn–Minkowski Theory

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In the classical Brunn–Minkowski theory, a fruitful principle for obtaining new functionals is to apply familiar functionals, such as the volume \(V_n\), to a Minkowski linear combination \(K+\epsilon L\). This approach can also be used for Orlicz combinations. In this paper, applying the mixed volume functional to Orlicz combination, we introduced the Orlicz mixed volumes and proved the variational formula for the mixed volume with respect to the Orlicz combination. Furthermore, the Orlicz mixed Minkowski inequality and the Orlicz mixed Brunn–Minkowski inequality are established and the equivalence between the inequalities is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, F., Zhou, J., Yang, C.: On the reverse Orlicz Busemann–Petty centroid inequality. Adv. Appl. Math. 47, 820–828 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Firey, W.J.: \(p\)-Means of convex bodies. Math. Scand. 10, 17–24 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39, 355–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gardner, R.: Geometric Tomography Encyclopedia of Mathematics and Its Applications, vol. 58, 2nd edn. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  5. Gardner, R.J., Hug, D., Weil, W.: The Orlicz-Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, L., Du, C., Leng, G.: On the Orlicz zonoid operator. J. Math. Anal. Appl. 424, 1261–1271 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haberl, C.: \(L_p\) intersection bodies. Adv. Math. 217, 2599–2624 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haberl, C., Ludwig, M.: A characterization of Lp intersection bodies. Int. Math. Res. Not. 88, 1–30 (2006)

    MATH  Google Scholar 

  9. Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haberl, C., Schuster, F.E.: General \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)

    Article  MATH  Google Scholar 

  11. Haberl, C., Schuster, F.E.: Asymmetric affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, C., Ma, X.-N., Shen, C.: On the Christoffel–Minkowski problem of Firey’s \(p\)-sum. Calc. Var. Partial Differ. Equ. 21, 137–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Q., He, B.: On the Orlicz Minkowski problem for polytopes. Discrete Comput. Geom. 48, 281–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, A.J., Leng, G.S.: A new proof of the Orlicz Busemann–Petty centroid inequality. Proc. Am. Math. Soc. 139, 1473–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ludwig, M.: General affine surface areas. Adv. Math. 224, 2346–2360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ludwig, M., Reitzner, M.: A classification of SL(n) invariant valuations. Ann. Math. 172, 1223–1271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lutwak, E.: The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lutwak, E.: The Brunn–Minkowski–Firey theory II: affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    Article  MATH  Google Scholar 

  20. Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_p\) Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    Article  MATH  Google Scholar 

  21. Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \(L_p\). J. Differ. Geom. 68, 159–184 (2004)

    Article  MATH  Google Scholar 

  22. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)

    Article  MATH  Google Scholar 

  23. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyer, M., Werner, E.: On the \(p\)-affine surface area. Adv. Math. 152, 288–313 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 151, expanded edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  27. Schütt, C., Werner, E.: Surface bodies and \(p\)-affine surface area. Adv. Math. 187, 98–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schuster, F.E., Weberndorfer, M.: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92, 263–283 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thompson, A.C.: Minkowski Geometry. Encyclopedia of Mathematics and its Applications, vol. 63. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  30. Wang, G.T., Leng, G.S., Huang, Q.Z.: Volume inequalities for Orlicz zonotopes. J. Math. Anal. Appl. 391, 183–189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weberndorfer, M.: Shadow systems of asymmetric \(L_p\) zonotopes. Adv. Math. 240, 613–635 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Werner, E.: On \(L_p\)-affine surface areas. Indiana Univ. Math. J. 56, 2305–2323 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Werner, E., Ye, D.-P.: New \(L_p\) affine isoperimetric inequalities. Adv. Math. 218, 762–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xi, Dongmeng, Jin, Hailin, Leng, Gangsong: The Orlicz Brunn–Minkowski inequality. Adv. Math. 260, 350–374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiong, G., Zou, D.: Orlicz mixed quermassintegrals. Sci. China Math. 57, 2549–2562 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu, B., Zhou, J., Xu, W.: Dual Orlicz-Brunn–Minkowski-theory. Adv. Math. 264, 700–725 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, G.: The Orlicz centroid inequality for star bodies. Adv. Appl. Math. 48, 432–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lujun Guo.

Additional information

Ruifang Chen: Supported in part by the National Natural Science Foundation of China (Grant No. U1504101). Lujun Guo: Supported in part by the National Natural Science Foundation of China (Grant No.11526079).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Guo, L. Orlicz Extensions of Brunn–Minkowski Theory. Results Math 73, 50 (2018). https://doi.org/10.1007/s00025-018-0811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0811-z

Keywords

Mathematics Subject Classification

Navigation