Skip to main content
Log in

Parametric Multi-Wavelets on a Hexagonal Sampling Lattice

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

An orthogonal basis is a dictionary of minimum size that can yield a sparse representation if designed to concentrate the signal energy over a set of few vectors. In this paper we construct such dictionary for a two dimensional hexagonal sampling lattice with the 1-parametric family of wavelets associated with Haar scaling function for scale factor 3. We also provide reconstruction formulae at various scales associated with these parametric multi wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiazzi, B., Baronti, S., Capanni, A., Santurri, L., Vitulli, R.: Advantages of hexagonal sampling grids and hexagonal shape detector elements in remote sensing imagers. In: Signal Processing Conference, 2002 11th European, pp. 1–4. IEEE (2002)

  2. Ashino, R., Kametani, M.: A lemma on matrices and a construction of multi-wavelets. Math. Jpn. 45, 267–288 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Blanchard, J., Krishtal, I.: Matricial filters and crystallographic composite dilation wavelets. Math. Comput. 81(278), 905–922 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blanchard, J.D., Steffen, K.R.: Crystallographic haar-type composite dilation wavelets. In: Wavelets and Multiscale Analysis, pp. 83–108. Springer (2011)

  5. Cabrelli, C.A., Heil, C., Molter, U.M.: Self-Similarity and Multiwavelets in Higher Dimensions, vol. 170. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  6. Camps, A., Bará, J., Sanahuja, I.C., Torres, F.: The processing of hexagonally sampled signals with standard rectangular techniques: application to 2-d large aperture synthesis interferometric radiometers. IEEE Trans. Geosci. Remote Sens. 35(1), 183–190 (1997)

    Article  Google Scholar 

  7. Chui, C.K., Jian-ao, L.: Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale= 3. Appl. Comput. Harmon. Anal. 2(1), 21–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chui, C.K., Lian, J.: A study of orthonormal multi-wavelets. Appl. Numer. Math. 20(3), 273–298 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A., Daubechies, I., Plonka, G.: Regularity of refinable function vectors. J. Fourier Anal. Appl. 3(3), 295–324 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donovan, G.C., Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Construction of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal. 27(4), 1158–1192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, X., Jia, W.: Hexagonal structure for intelligent vision. In: Information and Communication Technologies, 2005. ICICT 2005. First International Conference on, pp. 52–64. IEEE (2005)

  13. Krommweh, J., Plonka, G.: Directional haar wavelet frames on triangles. Appl. Comput. Harmon. Anal. 27(2), 215–234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lian, J., Chui, C.K.: Balanced multiwavelets with short filters. IEEE Signal Process. Lett. 11(2), 75–78 (2004)

    Article  Google Scholar 

  15. Mersereau, R.M.: The processing of hexagonally sampled two-dimensional signals. Proc. IEEE 67(6), 930–949 (1979)

    Article  Google Scholar 

  16. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Springer, New York (2006)

    MATH  Google Scholar 

  17. Oschler, K.L., Gray, R.M., Cosman, P.C.: Digital Images and Human Vision, pp. 35–52. MIT Press, Cambridge (1993)

    Google Scholar 

  18. Plonka, G., Strela, V.: From wavelets to multiwavelets. FB Mathematik University, Hagen (1997)

    MATH  Google Scholar 

  19. Plonka, G., Strela, V.: Construction of multiscaling functions with approximation and symmetry. SIAM J. Math. Anal. 29(2), 481–510 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Puschel, M., Rotteler, M.: Algebraic signal processing theory: 2-D spatial hexagonal lattice. IEEE Trans. Image Process. 16(6), 1506–1521 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Resnikoff, H.L., Raymond Jr., O., et al.: Wavelet Analysis: The Scalable Structure of Information. Springer, New York (2012)

    MATH  Google Scholar 

  22. Selesnick, I.W.: Balanced multiwavelet bases based on symmetric fir filters. IEEE Trans. Signal Process. 48(1), 184–191 (2000)

    Article  MATH  Google Scholar 

  23. Shen, L., Tan, H.H., Tham, J.Y.: Symmetric-antisymmetric orthonormal multiwavelets and related scalar wavelets. Appl. Comput. Harmon. Anal. 8(3), 258–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Strang, G., Strela, V.: Orthogonal multiwavelets with vanishing moments. In: SPIE’s International Symposium on Optical Engineering and Photonics in Aerospace Sensing, pp. 2–9. International Society for Optics and Photonics (1994)

  25. Strang, G., Strela, V.: Short wavelets and matrix dilation equations. IEEE Trans. Signal Process. 43(1), 108–115 (1995)

    Article  Google Scholar 

  26. Strela, V.: Multiwavelets: regularity, orthogonality, and symmetry via two-scale similarity transform. Stud. Appl. Math. 98(4), 335–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strela, V., Heller, P.N., Strang, G., Topiwala, P., Heil, C.: The application of multiwavelet filterbanks to image processing. IEEE Trans. Image Process. 8(4), 548–563 (1999)

    Article  Google Scholar 

  28. Van De Ville, D., Blu, T., Unser, M., Philips, W., Lemahieu, I., Van de Walle, R.: Hex-splines: a novel spline family for hexagonal lattices. IEEE Trans. Image Process. 13(6), 758–772 (2004)

    Article  MathSciNet  Google Scholar 

  29. Weidmann, C., Lebrun, J., Vetterli, M.: Significance tree image coding using balanced multiwavelets. In: Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on, vol. 1, pp. 97–101. IEEE (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupali Sadashiv Deshpande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhate, H.D., Deshpande, R.S. Parametric Multi-Wavelets on a Hexagonal Sampling Lattice. Results Math 73, 49 (2018). https://doi.org/10.1007/s00025-018-0804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0804-y

Keywords

Mathematics Subject Classification

Navigation