Skip to main content
Log in

A Survey of Closed Self-Shrinkers with Symmetry

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we survey known results on closed self-shrinkers for mean curvature flow and discuss techniques used in recent constructions of closed self-shrinkers with classical rotational symmetry. We also propose new existence and uniqueness problems for closed self-shrinkers with bi-rotational symmetry and provide numerical evidence for the existence of new examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abresch, U., Langer, J.: The normalized curved shortening flow and homothetic solutions. J. Differ. Geom. 23, 175–196 (1986)

    Article  MATH  Google Scholar 

  2. Abresch, U.: Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374, 169–192 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in \({\mathbb{S}}^{2} \times \mathbb{R}\) and \({\mathbb{H}}^{2} \times \mathbb{R}\). Acta Math. 193(2), 141–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alencar, H., Barros, A., Palmas, O., Reyes, J.G., Santos, W.: \(O(m) \times O(n)\)-invariant minimal hypersurfaces in \({\mathbb{R}}^{m+n}\). Ann. Global Anal. Geom. 27, 179–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andrews, B., Bryan, P.: A comparison theorem for the isoperimetric profile under curve-shortening flow. Commun. Anal. Geom. 19(3), 503–539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrews, B., Bryan, P.: Curvature bound for curve shortening flow via distance comparison and a direct proof of Grayson’s theorem. J. Reine Angew. Math. 653, 179–187 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Angenent, S.: Parabolic equations for curves on surfaces. I. Curves with \(p\)-integrable curvature. Ann. of Math. (2) 132, 451–483 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Angenent, S.: Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions. Ann. Math. (2) 133, 171–215 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Angenent, S.: Shrinking Doughnuts, Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), 21–38. Progr. Nonlinear Differential Equations Appl., vol. 7, pp. 21–38. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  10. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bryant, R. L.: Complex analysis and a class of Weingarten surfaces. arXiv preprint arXiv:1105.5589 (2011)

  12. Brendle, S.: Embedded self-similar shrinkers of genus \(0\). Ann. Math. 183, 715–728 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, J.-E.: One dimensional solutions of the \(\lambda \)-self shrinkers. Geom. Dedicata. 189, 97–112 (2017)

    Article  MathSciNet  Google Scholar 

  14. Colding, T.H., Minicozzi II, W.P., Pedersen, E.K.: Mean curvature flow. Bull. Amer. Math. Soc. (N.S.) 52(2), 297–333 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. del Pino, M., Kowalczyk, M., Wei, J.: On De Giorgi’s conjecture in dimension \(N \ge 9\). Ann. Math. (2) 174(3), 1485–1569 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Drugan, G.: An immersed \(S^2\) self-shrinker. Trans. Am. Math. Soc. 367(5), 3139–3159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Drugan, G.: Self-shrinking solutions to mean curvature flow. Ph.D. thesis, University of Washington (2014)

  18. Drugan, G., Nguyen, X.H.: Mean curvature flow of entire graphs evolving away from the heat flow. Proc. Am. Math. Soc. 145(2), 861–869 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Drugan, G., Nguyen, X. H.: Shrinking doughnuts via variational methods. J. Geom. Anal. (2018). https://doi.org/10.1007/s12220-017-9976-z

  20. Drugan, G., Kleene, S.J.: Immersed self-shrinkers. Trans. Am. Math. Soc. 369(10), 7213–7250 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ecker, K.: Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and their Applications, vol. 57. Birkhäuser, Boston Inc, Boston (2004)

    Book  MATH  Google Scholar 

  22. Epstein, C.L., Weinstein, M.I.: A stable manifold theorem for curve shortening equations Comm. Pure Appl. Math. 40(1), 119–139 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fraser, A., Schoen, R.: Uniqueness theorems for free boundary minimal disks in space forms. Int. Math. Res. Not. 2015(17), 8268–8274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gage, M.: Deforming curves on convex surfaces to simple closed geodesics. Indiana Univ. Math. J. 39, 1037–1059 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gimeno, V.: Isoperimetric inequalities for submanifolds. Jellett–Minkowski’s formula revisited. Proc. Lond. Math. Soc. (3) 110(3), 593–614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Halldorsson, H.P.: Self-similar solutions to the curve shortening flow. Trans. Am. Math. Soc. 364(10), 5285–5309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Halldorsson, H.P.: Self-similar solutions to the mean curvature flow in the Minkowski plane \({\mathbb{R}}^{1,1}\). J. Reine Angew. Math. 704, 209–243 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Hamilton, R.S.: Monotonicity formulas for parabolic flows on manifolds. Commun. Anal. Geom. 1(1), 127–137 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hopf, H.: Differential Geometry in the Large: Seminar Lectures New York University 1946 and Stanford University 1956, vol. 1000. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Hoffman, D.: The computer-aided discovery of new embedded minimal surfaces. Math. Intell. 9(3), 8–21 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hsiang, W.Y., Teng, Z.H., Yu, W.C.: New examples of constant mean curvature immersions of spheres into Euclidean space. Ann. Math. 117(3), 609–625 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hsiang, W.Y.: Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces I. J. Differ. Geom. 17(2), 337–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hsiung, C.C.: Some integral formulas for closed hypersurfaces in Riemannian space. Pac. J. Math. 6, 291–299 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hsiung, C.C.: Some integral formulas for closed hypersurfaces. Math. Scand. 2, 286–294 (1959)

    MathSciNet  MATH  Google Scholar 

  37. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Huisken, G.: A distance comparison principle for evolving curves. Asian J. Math. 2(1), 127–133 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ilmanen, T.: Lectures on Mean Curvature Flow and Related Equations (1998)

  41. Kapouleas, N., Kleene, S.J., Møller, N.M.: Mean curvature self-shrinkers of high genus: non-compact examples. arXiv preprint arXiv:1106.5454 (2011), to appear in J. Reine Angew. Math

  42. Kenmotsu, K.: Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245(2), 89–99 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kleene, S.J., Møller, N.M.: Self-shrinkers with a rotational symmetry. Trans. Am. Math. Soc. 366(8), 3943–3963 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kwong, K.-K.: An extension of Hsiung–Minkowski formulas and some applications. J. Geom. Anal. 26(1), 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lawson, H.B.: The unknottedness of minimal embeddings. Invent. Math. 11, 183–187 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  46. Magni, A., Mantegazza, C.: A note on Grayson’s theorem. Rend. Semin. Mat. Univ. Padova 131, 263–279 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. McGrath, P.: Closed mean curvature self-shrinking surfaces of generalized rotational type. arXiv preprint arXiv:1507.00681 (2015)

  48. Morgan, F.: Geometric Measure Theory. A Beginner’s Guide, fourth edn. Elsevier/Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  49. Møller, N. M.: Closed self-shrinking surfaces in \(\mathbb{R}^ 3\) via the torus. arXiv preprint arXiv:1111.7318 (2011)

  50. Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48(2), 711–748 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mramor, A., Wang, S.: On the topological rigidity of compact self shrinkers in \(\mathbb{R}^{3}\). arXiv preprint arXiv:1708.06581 (2017), to appear in Int. Math. Res. Not. IMRN

  52. Mullins, W.W.: Two dimensional motion of idealized grain boundaries. J. Appl. Phys. 27(8), 900–904 (1956)

    Article  MathSciNet  Google Scholar 

  53. Wente, H.: Counterexample to a conjecture of H. Hopf. Pac. J. Math. 121(1), 193–243 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drugan, G., Lee, H. & Nguyen, X.H. A Survey of Closed Self-Shrinkers with Symmetry. Results Math 73, 32 (2018). https://doi.org/10.1007/s00025-018-0763-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0763-3

Mathematics Subject Classification

Navigation