Skip to main content
Log in

Dual Orlicz Mixed Affine Quermassintegrals

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a class of geometric quantities of star bodies via dual Orlicz mixed volumes are presented. It is proved that these geometric quantities are affine invariant and precisely the generalizations of their classical counterparts. Further, some related inequalities with respect to these geometric quantities are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böröczky, K.J.: Stronger versions of the Orlicz–Petty projection inequality. J. Differ. Geom. 95(2), 215–247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231(3), 1974–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, F., Zhou, J., Yang, C.: On the reverse Orlicz Busemann–Petty centroid inequality. Adv. Appl. Math. 47(4), 820–828 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chou, K.S., Wang, X.J.: The \(L_{P}\) Brunn–Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205(1), 33–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  6. Gardner, R.J.: The dual Brunn–Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities. Adv. Math. 216, 358–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gardner, R.J., Hug, D., Weil, W.: The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97(3), 427–476 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gardner, R.J., Hug, D., Weil, W., Ye, D.: The dual Orlicz–Brunn–Minkowski theory. J. Math. Anal. Appl. 430(2), 810–829 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gardner, R.J., Vassallo, S.: Inequalities for dual isoperimetric deficits. Mathematika 45(2), 269–285 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grinberg, E.: Isoperimetric inequalities and identities for \(k\)-dimensional cross-sections of convex bodies. Math. Ann. 291(1), 75–86 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harbel, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224(6), 2485–2510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Q., He, B.: On the Orlicz Minkowski problem for polytopes. Discrete Comput. Geom. 48(2), 281–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Y., Liu, J., Xu, L.: On the uniqueness of the \(L_{P}\) Brunn–Minkowski problems: the constant p-curvature case in \(R^{3}\). Adv. Math. 281, 906–927 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klain, D.: Star valuations and dual mixed volumes. Adv. Math. 121(1), 80–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, A.J.: The generalization of Minkowski problems for polytopes. Geom. Dedicata 168, 245–264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, A.J., Huang, Q.: The \(L_{P}\) Loomis–Whitney inequality. Adv. Appl. Math. 75, 94–115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, A.J., Leng, G.: A new proof of Orlicz Busemann–Petty centroid inequality. Proc. Am. Math. Soc. 139, 1473–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, D.Y., Zou, D., Xiong, G.: Orlicz mixed affine quermassintegrals. Sci. China Math. 58(8), 1715–1722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ludwig, M.: General affine surface areas. Adv. Math. 224(6), 2346–2360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lutwak, E.: Mean dual and harmonic cross-sectional measures. Ann. Mat. Pura Appl. 119(4), 139–148 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lutwak, E.: A general isepiphanic inequality. Proc. Am. Math. Soc. 90(3), 415–421 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71(2), 232–261 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lutwak, E.: The Brunn–Minkowski–Firey theory, II: affine and geominimal surface areas. Adv. Math. 118(2), 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223(1), 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84(2), 365–387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Santaló, L.A.: Integral Geometry and Geometric Probability. Cambrige University Press, Cambrige (2004)

    Book  MATH  Google Scholar 

  27. Schneider, R.: Convex Body: The Brunn–Minkowski theory. Cambrige University Press, Cambrige (2014)

    MATH  Google Scholar 

  28. Xi, D., Jin, H., Leng, G.: The Orlicz Brunn–Minkowski inequality. Adv. Math. 260, 350–374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiong, G., Zou, D.: Orlicz mixed quermassintegrals. Sci. China Math. 57(12), 2549–2562 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, D.: New Orlicz affine isoperimetric inequalities. J. Math. Anal. Appl. 427, 905–929 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ye, D.: Dual Orlicz–Brunn–Minkowski theory: dual Orlicz \(L_{\phi }\) affine and geominimal surface areas. J. Math. Anal. Appl. 443, 352–371 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, C.J.: Orlicz dual mixed volumes. Results Math. 68, 93–104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu, B., Zhou, J., Xu, W.: Dual Orlicz–Brunn–Minkowski theory. Adv. Math. 264, 700–725 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu, G.: The Orlicz centroid inequality for star bodies. Adv. Appl. Math. 48(2), 432–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zou, D., Xiong, G.: Orlicz–John ellipsoids. Adv. Math. 265, 132–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunwei Xia.

Additional information

Supported by Fundamental Research Funds for the Central Universities (XDJK2017B017), National Science Foundation of China (No. 11271302), and China Scholarship Council (CSC 201406995086).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y. Dual Orlicz Mixed Affine Quermassintegrals. Results Math 72, 1683–1695 (2017). https://doi.org/10.1007/s00025-017-0730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-017-0730-4

Mathematics Subject Classification

Keywords

Navigation