Skip to main content
Log in

Interaction of Codazzi Couplings with (Para-)Kähler Geometry

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We study Codazzi couplings of an affine connection \(\nabla \) with a pseudo-Riemannian metric g, a nondegenerate 2-form \(\omega \), and a tangent bundle isomorphism L on smooth manifolds, as an extension of their parallelism under \(\nabla \). In the case that L is an almost complex or an almost para-complex structure and \((g, \omega , L)\) form a compatible triple, we show that Codazzi coupling of a torsion-free \(\nabla \) with any two of the three leads to its coupling with the remainder, which further gives rise to a (para-)Kähler structure on the manifold. This is what we call a Codazzi-(para-)Kähler structure; it is a natural generalization of special (para-)Kähler geometry, without requiring \(\nabla \) to be flat. In addition, we also prove a general result that g-conjugate, \(\omega \)-conjugate, and L-gauge transformations of \(\nabla \), along with identity, form an involutive Abelian group. Hence a Codazzi-(para-)Kähler manifold admits a pair of torsion-free connections compatible with the \((g, \omega , L)\). Our results imply that any statistical manifold may admit a (para-)Kähler structure as long as one can find an L that is compatible to g and Codazzi coupled with \(\nabla \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S., Nagaoka, H.: Methods of Information Geometry, Volume 191 of Translations of Mathematical Monographs. AMS, Providence (2000)

  2. Barndorff-Nielsen, O.E., Jupp, P.E.: Yokes and symplectic structures. J. Stat. Plan. Inference 63(2), 133–146 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, S.-Y., Yau, S.-T.: The real Monge-Ampère equation and affine flat structures. In: Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. I, pp. 339–370. Science Press, New York (1982)

  4. Donagi, R., Witten, E.: Supersymmetric Yang-Mills theory and integrable systems. Nucl. Phys. B 460(2), 299–334 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freed, D.S.: Special Kähler manifolds. Commun. Math. Phys. 203(1), 31–52 (1999)

    Article  MATH  Google Scholar 

  6. Furuhata, H.: Hypersurfaces in statistical manifolds. Differ. Geom. Appl. 27(3), 420–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gauduchon, P.: Hermitian connections and Dirac operators. Bollettino della Unione Matematica Italiana-B 11(2, Suppl.), 257–288 (1997)

  8. Gelfand, I., Retakh, V., Shubin, M.: Fedosov manifolds. Adv. Math. 136(1), 104–140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hitchin, N.J.: The moduli space of complex Lagrangian submanifolds. In: Surveys in Differential Geometry, vol. VII, pp. 327–345. International Press (2000)

  10. Ivanov, S., Zamkovoy, S.: Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23(2), 205–234 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lauritzen, S.L.: Statistical manifolds. Differential Geometry in Statistical Inference. Volume 10 of IMS Lecture Notes Monograph Series, pp. 163–216. Institute of Mathematical Statistics, The Hague (1987)

  12. Leder, J., Schwenk-Schellschmidt, A., Simon, U., Wiehe, M.: Generating higher order Codazzi tensors by functions. In: Geometry And Topology Of Submanifolds IX, pp. 174–191 (1999)

  13. Liu, H.L., Simon, U., Wang, C.P.: Codazzi tensors and the topology of surfaces. Ann. Glob. Anal. Geom. 16(2), 189–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, H.L., Simon, U., Wang, C.P.: Higher order Codazzi tensors on conformally flat spaces. Contrib. Algebra Geom. 39(2), 329–348 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Matsuzoe, H.: Statistical manifolds and geometry of estimating functions. Prospects of Differential Geometry and Its Related Fields. Proceedings of the 3rd International Colloquium on Differential Geometry and Its Related Fields, pp. 187–202. World Scientific, Singapore (2013)

    Chapter  Google Scholar 

  16. Moroianu, A.: Lectures on Kähler Geometry, Volume 69 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2007)

  17. Noda, T.: Symplectic structures on statistical manifolds. J. Aust. Math. Soc. 90(3), 371–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nomizu, K., Sasaki, T.: Affine Differential Geometry: Geometry of Affine Immersions, Volume 111 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1994)

  19. Pinkall, U., Schwenk-Schellschmidt, A., Simon, U.: Geometric methods for solving Codazzi and Monge–Ampere equations. Math. Ann. 298(1), 89–100 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shima, H.: On certain locally flat homogeneous manifolds of solvable Lie groups. Osaka J. Math. 13(2), 213–229 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Simon, U.: Affine differential geometry. In: Dillen, F., Verstraelen, L. (eds.) Handbook of Differential Geometry, vol. 1, pp. 905–961. North-Holland (2000)

  22. Schwenk-Schellschmidt, A., Simon, U.: Codazzi-equivalent affine connections. Result Math. 56(1–4), 211–229 (2009)

    Google Scholar 

  23. Tao, J., Zhang, J.: Transformations and coupling relations for affine connections. Differ. Geom. Appl. 49, 111–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, J.: Divergence function, duality, and convex analysis. Neural Comput. 16(1), 159–195 (2004)

    Article  MATH  Google Scholar 

  25. Zhang, J.: A note on curvature of \(\alpha \)-connections of a statistical manifold. Ann. Inst. Stat. Math. 59(1), 161–170 (2007)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J.: Nonparametric information geometry: from divergence function to referential-representational biduality on statistical manifolds. Entropy 15(12), 5384–5418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, J., Li, F.-B.: Symplectic and Kähler structures on statistical manifolds induced from divergence functions. In: Geometric Science of Information, volume 8085 of Lecture Notes in Computer Science, pp. 595–603. Springer, New York (2013)

  28. Zhang, J., Matsuzoe, H.: Dualistic differential geometry associated with a convex function. In: Advances in Applied Mathematics and Global Optimization: In: Honor of Gilbert Strang, Volume 17 of Advances in Mechanics and Mathematics, pp. 439–464 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, T., Zhang, J. Interaction of Codazzi Couplings with (Para-)Kähler Geometry. Results Math 72, 2037–2056 (2017). https://doi.org/10.1007/s00025-017-0711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-017-0711-7

Keywords

Mathematics Subject Classification

Navigation