Abstract
We determine the multiplicative loops of locally compact connected 4-dimensional quasifields Q having the field of complex numbers as their kernel. In particular, we turn our attention to multiplicative loops which have either a normal subloop of dimension one or which contain a subgroup isomorphic to \(Spin_3({\mathbb {R}})\). Although the 4-dimensional semifields Q are known, their multiplicative loops have interesting Lie groups generated by left or right translations. We determine explicitly the quasifields Q which coordinatize locally compact translation planes of dimension 8 admitting an at least 16-dimensional Lie group as automorphism group.
This is a preview of subscription content, access via your institution.
References
Adams, J.F.: On the non-existence of elements of Hopf invariant one. Ann. Math. 72, 20–104 (1960)
Betten, D.: 4-dimensionale Translationsebenen. Math. Z. 128, 129–151 (1972)
Betten, D.: 4-dimensionale Translationsebenen mit 8-dimensionaler Kollineationsgruppe. Geom. Ded. 2, 327–339 (1973)
Betten, D.: 4-dimensionale Translationsebenen mit irreduzibler Kollineationsgruppe. Arch. Math. 24, 552–560 (1973)
Betten, D.: 4-dimensionale Translationsebenen mit genau einer Fixrichtung. Deom. Ded. 3, 405–440 (1975)
Betten, D.: 4-dimensionale Translationsebenen mit 7-dimensionaler Kollineationsgruppe. J. Reine Angew. Math. 285, 126–148 (1976)
Betten, D.: 4-dimensionale Translationsebenen mit kommutativer Standgruppe. Math. Z. 154, 125–141 (1977)
Boekholt, S.: Zur Klassifikation actdimensionaler kompakter Ebenen mit mindestens 16-dimensionaler Automorphismengruppe. Univ. Stuttgart, Fakultät Mathematik, 160 S. (2000)
Falcone, G., Figula, Á., Strambach, K.: Multiplicative loops of 2-dimensional topological quasifields. Commun. Algebra 44, 2592–2620 (2016)
Figula, Á., Strambach, K.: Loops on spheres having a compact-free inner mapping group. Monatsh. Math. 156, 123–140 (2009)
Grundhöfer, T., Salzmann, H.: Locally compact double loops and ternary fields. Quasigroups and loops: theory and applications. Sigma Ser. Pure Math. 8, 313–355 (1990)
Hähl, H.: Achtdimensionale lokalkompakte Translationsebenen mit großen Streckungsgruppen. Arch. Math. 34, 231–242 (1980)
Hähl, H.: Achtdimensionale lokalkompakte Translationsebenen mit zu \(SL_2({\mathbb{C}})\) isomorphen Kollineationsgruppen. J. Reine Angew. Math. 330, 76–92 (1982)
Hähl, H.: Achtdimensionale lokalkompakte Translationsebenen mit mindestens 17-dimensionaler Kollineationsgruppe. Geom. Dedicata 21, 299–340 (1986)
Hu, Sz-T: Homotopy Theory. Academic Press, New York (1959)
Hughes, D.R., Piper, F.C.: Projective Planes. Springer, Berlin (1973)
Knarr, N.: Translation Planes. Springer, Berlin (1995)
Nagy, P.T., Strambach, K.: Loops in Group Theory and Lie Theory. de Gruyter, Berlin (2002)
Nagy, P.T., Strambach, K.: Schreier loops. Czechoslov. Math. J. 58, 759–786 (2008)
Onishchik, A.L., Sulanke, R.: Projective and Cayley–Klein Geometries. Springer, Berlin (2006)
Ortleb, S.: A new family of locally compact 4-dimensional translation planes admitting a 7-dimensional collineation group. Adv. Geom. 9, 1–12 (2009)
Pickert, G.: Projektive Ebenen. Springer, Berlin (1955)
Plaumann, P., Strambach, K.: Zweidimensionale Quasialgebren mit Nullteilern. Aequ. Math. 15, 249–264 (1977)
Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M.: Compact Projective Planes. de Gruyter, Berlin (1995)
Tits, J.: Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen. Springer, Berlin (1967)
Völklein, H.: Transitivitätsfragen bei linearen Liegruppen. Arch. Math. 36, 23–34 (1981)
Author information
Authors and Affiliations
Corresponding author
Additional information
In accordance with Karl’s will, we cordially dedicate this paper to the 75th birthday of our common friend Heinrich Wefelscheid.
Rights and permissions
About this article
Cite this article
Falcone, G., Figula, Á. & Strambach, K. Multiplicative Loops of Quasifields Having Complex Numbers as Kernel. Results Math 72, 2129–2156 (2017). https://doi.org/10.1007/s00025-017-0699-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00025-017-0699-z
Keywords
- Multiplicative loops of locally compact quasifields
- semifields
- sections in Lie groups
- translation planes
- automorphism groups