Skip to main content
Log in

A Generalization of Nadler’s Fixed Point Theorem

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In the present paper, we generalize the well-known Nadler’s fixed point theorem (Nadler in Pac J Math 30:475–488, 1969), and one of some Dhompongsa and Yingtaweesittikul type theorems for multi-valued operators, see (Dhompongsa and Yingtaweesittikul in Fixed Point Theory Appl, 2007). Also, we give an example showing that our result is a proper generalization of some previous theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Papageorgiou, N.S.: Common fixed point theory for multivalued contractive maps of Reich type in uniform spaces. Appl. Anal. 83(1), 37–47 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, R.P., O’Regan, D., Shahzad, N.: Fixed point theorems for generalized contractive maps of Meir–Keeler type. Math. Nachr. 276, 3–12 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  5. Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571–575 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241–251 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ćirić, Lj, B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)

    MATH  MathSciNet  Google Scholar 

  8. Ćirić, Lj, B.: Multi-valued nonlinear contraction mappings. Nonlinear Anal. 71, 2716–2723 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ćirić, Lj, B., Ume, J.S.: Common fixed point theory for multi-valued nonself mappings. Publ. Math. Debr. 60, 359–371 (2002)

    MATH  Google Scholar 

  10. Dhompongsa, S., Yingtaweesittikul, H.: Diametrically contractive multivalued mappings. Fixed Point Theory Appl., article ID 19745 (2007)

  11. Du, W.S.: On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol. Appl. 159(1), 49–56 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Du, W.S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73(5), 1439–1446 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dugundji, J., Granas, A.: Fixed Point Theory. Springer, New York (2003)

    MATH  Google Scholar 

  14. Edelstein, M.: An extension of Banach contraction principle. Proc. Am. Math. Soc. 12(1), 7–10 (1961)

    MATH  MathSciNet  Google Scholar 

  15. Eldred, A.A., Anuradha, J., Veeramani, P.: On equivalence of generalized multi-valued contactions and Nadler’s fixed point theorem. J. Math. Anal. Appl. 336(2), 751–757 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Geraghty, M.: On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eshaghi Gordji, M., Baghani, H., Khodaei, H., Ramezani, M.: Geraghty’s fixed Point theorem for specialmulti-valued mappings. Thai J. Math. 10, 225–231 (2012)

    MATH  MathSciNet  Google Scholar 

  18. Eshaghi Gordji, M., Baghani, H., Khodaei, H., Ramezani, M.: Generalized multi-valued contraction mappings. J. Comput. Anal. Appl. 13(4), 730–733 (2011)

    MATH  MathSciNet  Google Scholar 

  19. Kamran, T., Kiran, Q.: Fixed point theorems for multi-valued mappings obtained by altering distances. Math. Comput. Model. 54, 2772–2777 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lim, T.C.: On characterizations of Meir–Keeler contractive maps. Nonlinear Anal. 46, 113–120 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Meir, A., Keeler, E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  22. Minak, G., Altun, I.: Some new generalizations of Mizoguchi–Takahashi type fixed point theorem. J. Inequal. Appl. 2013, 493 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177–188 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nadler Jr., S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  25. Proinov, P.D.: Fixed point theorems in metric spaces. Nonlinear Anal. TMA 64(3), 546–557 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Reich, S.: Some problems and results in fixed point theory. Topological methods in nonlinear functional analysis (Toronto, Ont., 1982), Contemp. Math., Am. Math. Soc., Providence, RI textbf21, 179–187 (1983)

  27. Reich, S.: Fixed points of contractive functions. Boll. Un. Math. Ital. 4(5), 26–42 (1972)

    MATH  MathSciNet  Google Scholar 

  28. Rhoades, B.E.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)

    MATH  Google Scholar 

  30. Suzuki, T.: Mizoguchi and Takahashi’s fixed point theorem is a real generalization of Nadler’s. J. Math. Anal. Appl. 340, 752–755 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, O., Stan, G. A Generalization of Nadler’s Fixed Point Theorem. Results Math 72, 1525–1534 (2017). https://doi.org/10.1007/s00025-017-0694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-017-0694-4

Mathematics Subject Classification

Keywords

Navigation