Abstract
In the present paper, we generalize the well-known Nadler’s fixed point theorem (Nadler in Pac J Math 30:475–488, 1969), and one of some Dhompongsa and Yingtaweesittikul type theorems for multi-valued operators, see (Dhompongsa and Yingtaweesittikul in Fixed Point Theory Appl, 2007). Also, we give an example showing that our result is a proper generalization of some previous theorems.
Similar content being viewed by others
References
Agarwal, R.P., O’Regan, D., Papageorgiou, N.S.: Common fixed point theory for multivalued contractive maps of Reich type in uniform spaces. Appl. Anal. 83(1), 37–47 (2004)
Agarwal, R.P., O’Regan, D., Shahzad, N.: Fixed point theorems for generalized contractive maps of Meir–Keeler type. Math. Nachr. 276, 3–12 (2004)
Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)
Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)
Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571–575 (1966)
Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241–251 (1976)
Ćirić, Lj, B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)
Ćirić, Lj, B.: Multi-valued nonlinear contraction mappings. Nonlinear Anal. 71, 2716–2723 (2009)
Ćirić, Lj, B., Ume, J.S.: Common fixed point theory for multi-valued nonself mappings. Publ. Math. Debr. 60, 359–371 (2002)
Dhompongsa, S., Yingtaweesittikul, H.: Diametrically contractive multivalued mappings. Fixed Point Theory Appl., article ID 19745 (2007)
Du, W.S.: On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol. Appl. 159(1), 49–56 (2012)
Du, W.S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73(5), 1439–1446 (2010)
Dugundji, J., Granas, A.: Fixed Point Theory. Springer, New York (2003)
Edelstein, M.: An extension of Banach contraction principle. Proc. Am. Math. Soc. 12(1), 7–10 (1961)
Eldred, A.A., Anuradha, J., Veeramani, P.: On equivalence of generalized multi-valued contactions and Nadler’s fixed point theorem. J. Math. Anal. Appl. 336(2), 751–757 (2007)
Geraghty, M.: On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)
Eshaghi Gordji, M., Baghani, H., Khodaei, H., Ramezani, M.: Geraghty’s fixed Point theorem for specialmulti-valued mappings. Thai J. Math. 10, 225–231 (2012)
Eshaghi Gordji, M., Baghani, H., Khodaei, H., Ramezani, M.: Generalized multi-valued contraction mappings. J. Comput. Anal. Appl. 13(4), 730–733 (2011)
Kamran, T., Kiran, Q.: Fixed point theorems for multi-valued mappings obtained by altering distances. Math. Comput. Model. 54, 2772–2777 (2011)
Lim, T.C.: On characterizations of Meir–Keeler contractive maps. Nonlinear Anal. 46, 113–120 (2001)
Meir, A., Keeler, E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969)
Minak, G., Altun, I.: Some new generalizations of Mizoguchi–Takahashi type fixed point theorem. J. Inequal. Appl. 2013, 493 (2013)
Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177–188 (1989)
Nadler Jr., S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)
Proinov, P.D.: Fixed point theorems in metric spaces. Nonlinear Anal. TMA 64(3), 546–557 (2006)
Reich, S.: Some problems and results in fixed point theory. Topological methods in nonlinear functional analysis (Toronto, Ont., 1982), Contemp. Math., Am. Math. Soc., Providence, RI textbf21, 179–187 (1983)
Reich, S.: Fixed points of contractive functions. Boll. Un. Math. Ital. 4(5), 26–42 (1972)
Rhoades, B.E.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)
Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)
Suzuki, T.: Mizoguchi and Takahashi’s fixed point theorem is a real generalization of Nadler’s. J. Math. Anal. Appl. 340, 752–755 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Popescu, O., Stan, G. A Generalization of Nadler’s Fixed Point Theorem. Results Math 72, 1525–1534 (2017). https://doi.org/10.1007/s00025-017-0694-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00025-017-0694-4