Agarwal, R.P., Karapinar, E., O’Regan, D., Roldan-Lopez-de-Hierro, A.F.: Fixed Point Theory in Metric Type Spaces. Springer, Cham (2015)
Book
MATH
Google Scholar
Bakhtin, I.A.: The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 30, 26–37 (1989)
Google Scholar
Betiuk-Pilarska, A., Domínguez Benavides, T.: The fixed point property for some generalized nonexpansive mappings and renormings. J. Math. Anal. Appl. 429, 800–813 (2015)
MathSciNet
Article
MATH
Google Scholar
Branciari, A.: A Fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces. Publ. Math. (Debr.) 57, 31–37 (2000)
MathSciNet
MATH
Google Scholar
Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989)
MATH
Google Scholar
Hitzler, P., Seda, A.K.: Dislocated topologies. J. Electr. Eng. 51, 3–7 (2000)
MATH
Google Scholar
Jachymski, J., Jóźwik, I.: Nonlinear contractive conditions: a comparison and related problems. Banach Center Publ. 77, 123–146 (2007)
MathSciNet
Article
MATH
Google Scholar
Jachymski, J.: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. 74, 768–774 (2011)
MathSciNet
Article
MATH
Google Scholar
Jleli, M., Samet, B.: A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 61, 1–14 (2015)
MathSciNet
MATH
Google Scholar
Jleli, M., Samet, B.: The Kannan’s fixed point theorem in a cone rectangular metric space. J. Nonlinear Sci. Appl. 2, 161–167 (2009)
MathSciNet
MATH
Google Scholar
Jleli, M., Samet, B.: A new generalization of the Banach contraction principle. J. Inequal. Appl. 38, 1–8 (2014)
MathSciNet
MATH
Google Scholar
Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Cham (2014)
Book
MATH
Google Scholar
Matkowski, J.: Integrable solutions of functional equations. Diss. Math. 127, 1–68 (1975)
MathSciNet
MATH
Google Scholar
Paesano, D., Vetro, C.: Multi-valued \(F\)-contractions in \(0\)-complete partial metric spaces with application to Volterra type integral equation. RACSAM 108, 1005–1020 (2014)
MathSciNet
Article
MATH
Google Scholar
Piri, H., Kumam, P.: Some fixed point theorems concerning \(F\)-contraction in complete metric spaces. Fixed Point Theory Appl. 210, 1–11 (2014)
MathSciNet
Google Scholar
Secelean, N.A.: Iterated function systems consisting of \(F\)-contractions. Fixed Point Theory Appl. 277, 1–13 (2013)
MathSciNet
MATH
Google Scholar
Secelean, N.A.: Weak F-contractions and some fixed point results. Bull. Iran. Math. Soc. 42(3), 779–798 (2016)
MathSciNet
Google Scholar
Secelean, N.A., Wardowski, D.: \(\psi F\)-contractions: not necessarily nonexpansive Picard operators. Results. Math. (2016). doi:10.1007/s00025-016-0570-7
Senapati, T., Dey, L.K., Dolićanin-Dekić, D.: Extensions of Ćirić and Wardowski type fixed point theorems in D-generalized metric spaces. Fixed Point Theory Appl. 33, 1–14 (2016)
MATH
Google Scholar
Sgroi, M., Vetro, C.: Multi-valued \(F\)-contractions and the solution of certain functional and integral equations. Filomat 27, 1259–1268 (2013)
MathSciNet
Article
MATH
Google Scholar
Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136, 1861–1869 (2008)
MathSciNet
Article
MATH
Google Scholar
Suzuki, T.: Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. Article ID 458098 (2014)
Turinici, M., Wardowski implicit contractions in metric spaces. arXiv:1212.3164v2 [Math.GN]
Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 94, 1–6 (2012)
MathSciNet
MATH
Google Scholar
Wardowski, D., Dung, N.V.: Fixed points of \(F\)-weak contractions on complete metric spaces. Demonstr. Math. 47, 146–155 (2014)
MathSciNet
MATH
Google Scholar
Włodarczyk, K., Plebaniak, R.: Endpoint theory for set-valued nonlinear asymptotic contractions with respect to generalized pseudodistances in uniform spaces. J. Math. Anal. Appl. 339, 344–358 (2008)
MathSciNet
Article
MATH
Google Scholar
Włodarczyk, K., Plebaniak, R.: Contractivity of Leader type and fixed points in uniform spaces with generalized pseudodistances. J. Math. Anal. Appl. 387, 533–541 (2012)
MathSciNet
Article
MATH
Google Scholar
Włodarczyk, K., Plebaniak, R.: Contractions of Banach, Tarafdar, Meir-Keller, Ciric-Jachymski-Matkowski and Suzuki types and fixed points in uniform spaces with generalized pseudodistances. J. Math. Anal. Appl. 404, 338–350 (2013)
MathSciNet
Article
MATH
Google Scholar