Abstract
In this paper, some Turán-type inequalities for Mittag–Leffler functions are considered. The method is based on proving monotonicity for special ratio of sections for series of Mittag–Leffler functions. Furthermore, we deduce the Lazarević- and Wilker-type inequalities for Mittag–Leffler functions.
Similar content being viewed by others
References
Baricz, Á.: Turán type inequalities for hypergeometric functions. Proc. Am. Math. Soc. 136(9), 3223–3229 (2008)
Baricz, Á.: Functional inequalities involving Bessel and modified Bessel functions of the first kind. Expos. Math. 26, 279–293 (2008)
Barnard, R.W., Gordy, M.B., Richards, K.C.: A note on Turán type and mean inequalities for the Kummer function. J. Math. Anal. Appl. 349(1), 259–263 (2009)
Biernacki, M., Krzyz, J.: On the monotonicity of certain functionals in the theory of analytic functions. Ann. Univ. M. Curie-Skłodowska 2, 134–145 (1995)
Bullen, P.S., Mitrinović, D.S., Vasić, P.M.: Means and their Inequalities. D. Reidel Publ, Dordrecht (1988)
Diethelm, K.: The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Lecture Notes in Mathematics. Springer, Heidelberg (2010)
Dzherbashyan, M.M.: Integral Transform Representations of Functions in the Complex Domain. Nauka, Moscow (1966)
Eidelman, S.D., Ivasyshen, S.D., Kochubei, A.N.: Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser, Basel (2004)
Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order, Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin (1997)
Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer, New York (2014)
Kalmykov, S.I., Karp, D.B.: Log-concavity for series in reciprocal gamma functions. Int. Transforms Spec. Funct. 24(11), 859–872 (2013)
Kalmykov, S.I., Karp, D.B.: Log-convexity and log-concavity for series in gamma ratios and applications. J. Math. Anal. Appl. 406, 400–418 (2013)
Karp, D.B., Sitnik, S.M.: Log-convexity and log-concavity of hypergeometric-like functions. J. Math. Anal. Appl. 364(2), 384–394 (2010)
Karp, D.B., Sitnik, S.M.: Inequalities and monotonicity of ratios for generalized hypergeometric function. J. Approx. Theory 161, 337–352 (2009)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Kilbas, A.A.: H-Transforms, Theory and Applications. CRC Press, Boca Raton (2004)
Kiryakova, V.: The multi-index Mittag–Leffler functions as an important class of special functions of fractional calculus. Comput. Math. Appl. 59(5), 1885–1895 (2010)
Kiryakova, V.: Multiple (multiindex) Mittag–Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 118(1), 241–259 (2000)
Kochubei, A.N.: A Cauchy problem for evolution equations of fractional order. Differ. Equ. 2, 967–974 (1989)
Kochubei, A.N.: Fractional-order diffusion. Differ. Equ. 26, 485–492 (1990)
Lazarević, I.: Neke nejednakosti sa hiperbolickim funkcijama. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 170, 41–48 (1966)
McEliece, R.J., Reznick, B., Shearer, J.B.: A Turán inequality arising in information theory. SIAM J. Math. Anal 12(6), 931–934 (1981)
Mathai, A.M., Saxena, R.: The H-Function with Applications in Statistics and Other Disciplines. Halsted Press (John Wiley & Sons), New York (1978)
Mathai, A.M., Saxena, R., Kishore, R., Haubold, H.J.: The H-Function. Springer, Berlin (2010)
Mehrez, K., Said, M.B., El Kamel, J.: Turán type inequalities for Dunkl and \(q\)-Dunkl kernel. arXiv.1503.04285
Mehrez, K., Sitnik, S.M.: Turán type inequalties for Mittag–Leffler functions. arXiv:1603.08504v2
Mehrez, K., Sitnik, S.M.: Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions, p 8. arXiv:1410.6120v2 [math.CA] (2014)
Mehrez, K., Sitnik, S.M.: Inequalities for sections of exponential function series and proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions. RGMIA Res. Rep. Collect. 17, Article ID 132 (2014)
Mehrez, K., Sitnik, S.M.: Proofs of some conjectures on monotonicity of ratios of Kummer and Gauss hypergeometric functions and related Turán-type inequalities. Analysis (2016 ) (Accepted for publication)
Mehrez, K., Sitnik, S.M.: Monotonicity of ratios of \(q\)–Kummer confluent hypergeometric and \(q\)-hypergeometric functions and associated Turán types inequalities, p 9. arXiv:1412.1634v1 [math.CA] (2014)
Mehrez, K., Sitnik, S.M.: On monotonicity of ratios of \(q\)-Kummer confluent hypergeometric and \(q\)-hypergeometric functions and associated Turán types inequalities. RGMIA Res. Rep. Collect. 17, Article ID 150 (2014)
Mehrez, K., Sitnik, S.M.: On monotonicity of ratios of some \(q\)-hypergeometric functions. Matematicki Vesnik (2016) (Accepted for publication)
Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer, Alphen aan den Rijn (1993)
Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering. Academic Press, Cambridge (1998)
Ponnusamy, S., Vuorinen, M.: Asymptotic expansions and inequalities for hypergeometric functions. Mathematika 44, 278–301 (1997)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993)
Sitnik, S.M.: Inequalities for the exponential remainder,preprint, Institute of Automation and Control Process, Far EasternBranch of the Russian Academy of Sciences, Vladivostok (1993) (in Russian)
Sitnik, S.M.: A conjecture on monotonicity of a ratio of Kummer hypergeometric functions, 2012, version 2, p. 4 (2014). arXiv:1207.0936
Sitnik, S.M.: Conjectures on Monotonicity of Ratios of Kummer and Gauss Hypergeometric Functions. RGMIA Res. Rep. Collect. 17, Article 107, p. 4 (2014)
Sitnik, S.M.: Generalized Young and Cauchy–Bunyakowsky inequalities with applications: a survey, p. 51 (2012). arXiv:1012.3864
Srivastava, H.M., Manocha, H.A.: A treatise on generating functions. Bull. Am. Soc. 19(N1), 346–348 (1988)
Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two Variables. South Asian Publishers Pvt. Ltd, New Delhi (1988)
Turán, P.: On the zeros of the polynomials of Legendre. Casopis Pest. Mat. Fys. 75, 113–122 (1950)
Sun, Y., Baricz, Á.: Inequalities for the generalized Marcum \(Q\)-function. Appl. Math. Comput. 203(1), 134–141 (2008)
Szegö, G.: Orthogonal Polynomials. AMS, NewYork (1939)
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
Wilker, J.B.: Problem E 3306. Am. Math. Mon. 96, 55 (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mehrez, K., Sitnik, S.M. Functional Inequalities for the Mittag–Leffler Functions. Results Math 72, 703–714 (2017). https://doi.org/10.1007/s00025-017-0664-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00025-017-0664-x