Skip to main content
Log in

Functional Inequalities for the Mittag–Leffler Functions

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, some Turán-type inequalities for Mittag–Leffler functions are considered. The method is based on proving monotonicity for special ratio of sections for series of Mittag–Leffler functions. Furthermore, we deduce the Lazarević- and Wilker-type inequalities for Mittag–Leffler functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baricz, Á.: Turán type inequalities for hypergeometric functions. Proc. Am. Math. Soc. 136(9), 3223–3229 (2008)

    Article  MATH  Google Scholar 

  2. Baricz, Á.: Functional inequalities involving Bessel and modified Bessel functions of the first kind. Expos. Math. 26, 279–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnard, R.W., Gordy, M.B., Richards, K.C.: A note on Turán type and mean inequalities for the Kummer function. J. Math. Anal. Appl. 349(1), 259–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biernacki, M., Krzyz, J.: On the monotonicity of certain functionals in the theory of analytic functions. Ann. Univ. M. Curie-Skłodowska 2, 134–145 (1995)

    Google Scholar 

  5. Bullen, P.S., Mitrinović, D.S., Vasić, P.M.: Means and their Inequalities. D. Reidel Publ, Dordrecht (1988)

    Book  MATH  Google Scholar 

  6. Diethelm, K.: The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Lecture Notes in Mathematics. Springer, Heidelberg (2010)

  7. Dzherbashyan, M.M.: Integral Transform Representations of Functions in the Complex Domain. Nauka, Moscow (1966)

    Google Scholar 

  8. Eidelman, S.D., Ivasyshen, S.D., Kochubei, A.N.: Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  9. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order, Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin (1997)

    Google Scholar 

  10. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer, New York (2014)

    Book  MATH  Google Scholar 

  11. Kalmykov, S.I., Karp, D.B.: Log-concavity for series in reciprocal gamma functions. Int. Transforms Spec. Funct. 24(11), 859–872 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kalmykov, S.I., Karp, D.B.: Log-convexity and log-concavity for series in gamma ratios and applications. J. Math. Anal. Appl. 406, 400–418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karp, D.B., Sitnik, S.M.: Log-convexity and log-concavity of hypergeometric-like functions. J. Math. Anal. Appl. 364(2), 384–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, D.B., Sitnik, S.M.: Inequalities and monotonicity of ratios for generalized hypergeometric function. J. Approx. Theory 161, 337–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  16. Kilbas, A.A.: H-Transforms, Theory and Applications. CRC Press, Boca Raton (2004)

    Book  MATH  Google Scholar 

  17. Kiryakova, V.: The multi-index Mittag–Leffler functions as an important class of special functions of fractional calculus. Comput. Math. Appl. 59(5), 1885–1895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kiryakova, V.: Multiple (multiindex) Mittag–Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 118(1), 241–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kochubei, A.N.: A Cauchy problem for evolution equations of fractional order. Differ. Equ. 2, 967–974 (1989)

    MathSciNet  Google Scholar 

  20. Kochubei, A.N.: Fractional-order diffusion. Differ. Equ. 26, 485–492 (1990)

    MATH  Google Scholar 

  21. Lazarević, I.: Neke nejednakosti sa hiperbolickim funkcijama. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 170, 41–48 (1966)

    Google Scholar 

  22. McEliece, R.J., Reznick, B., Shearer, J.B.: A Turán inequality arising in information theory. SIAM J. Math. Anal 12(6), 931–934 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mathai, A.M., Saxena, R.: The H-Function with Applications in Statistics and Other Disciplines. Halsted Press (John Wiley & Sons), New York (1978)

    MATH  Google Scholar 

  24. Mathai, A.M., Saxena, R., Kishore, R., Haubold, H.J.: The H-Function. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  25. Mehrez, K., Said, M.B., El Kamel, J.: Turán type inequalities for Dunkl and \(q\)-Dunkl kernel. arXiv.1503.04285

  26. Mehrez, K., Sitnik, S.M.: Turán type inequalties for Mittag–Leffler functions. arXiv:1603.08504v2

  27. Mehrez, K., Sitnik, S.M.: Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions, p 8. arXiv:1410.6120v2 [math.CA] (2014)

  28. Mehrez, K., Sitnik, S.M.: Inequalities for sections of exponential function series and proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions. RGMIA Res. Rep. Collect. 17, Article ID 132 (2014)

  29. Mehrez, K., Sitnik, S.M.: Proofs of some conjectures on monotonicity of ratios of Kummer and Gauss hypergeometric functions and related Turán-type inequalities. Analysis (2016 ) (Accepted for publication)

  30. Mehrez, K., Sitnik, S.M.: Monotonicity of ratios of \(q\)–Kummer confluent hypergeometric and \(q\)-hypergeometric functions and associated Turán types inequalities, p 9. arXiv:1412.1634v1 [math.CA] (2014)

  31. Mehrez, K., Sitnik, S.M.: On monotonicity of ratios of \(q\)-Kummer confluent hypergeometric and \(q\)-hypergeometric functions and associated Turán types inequalities. RGMIA Res. Rep. Collect. 17, Article ID 150 (2014)

  32. Mehrez, K., Sitnik, S.M.: On monotonicity of ratios of some \(q\)-hypergeometric functions. Matematicki Vesnik (2016) (Accepted for publication)

  33. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer, Alphen aan den Rijn (1993)

    Book  MATH  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering. Academic Press, Cambridge (1998)

    Google Scholar 

  35. Ponnusamy, S., Vuorinen, M.: Asymptotic expansions and inequalities for hypergeometric functions. Mathematika 44, 278–301 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  37. Sitnik, S.M.: Inequalities for the exponential remainder,preprint, Institute of Automation and Control Process, Far EasternBranch of the Russian Academy of Sciences, Vladivostok (1993) (in Russian)

  38. Sitnik, S.M.: A conjecture on monotonicity of a ratio of Kummer hypergeometric functions, 2012, version 2, p. 4 (2014). arXiv:1207.0936

  39. Sitnik, S.M.: Conjectures on Monotonicity of Ratios of Kummer and Gauss Hypergeometric Functions. RGMIA Res. Rep. Collect. 17, Article 107, p. 4 (2014)

  40. Sitnik, S.M.: Generalized Young and Cauchy–Bunyakowsky inequalities with applications: a survey, p. 51 (2012). arXiv:1012.3864

  41. Srivastava, H.M., Manocha, H.A.: A treatise on generating functions. Bull. Am. Soc. 19(N1), 346–348 (1988)

    Article  MathSciNet  Google Scholar 

  42. Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two Variables. South Asian Publishers Pvt. Ltd, New Delhi (1988)

    MATH  Google Scholar 

  43. Turán, P.: On the zeros of the polynomials of Legendre. Casopis Pest. Mat. Fys. 75, 113–122 (1950)

    MathSciNet  MATH  Google Scholar 

  44. Sun, Y., Baricz, Á.: Inequalities for the generalized Marcum \(Q\)-function. Appl. Math. Comput. 203(1), 134–141 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Szegö, G.: Orthogonal Polynomials. AMS, NewYork (1939)

    Book  MATH  Google Scholar 

  46. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  47. Wilker, J.B.: Problem E 3306. Am. Math. Mon. 96, 55 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Mehrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrez, K., Sitnik, S.M. Functional Inequalities for the Mittag–Leffler Functions. Results Math 72, 703–714 (2017). https://doi.org/10.1007/s00025-017-0664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-017-0664-x

Keywords

Mathematics Subject Classification

Navigation