Skip to main content
Log in

Resolvability and Strong Resolvability in the Direct Product of Graphs

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Given a connected graph G, a vertex \({w \in V(G)}\) distinguishes two different vertices u, v of G if the distances between w and u, and between w and v are different. Moreover, w strongly resolves the pair u, v if there exists some shortest uw path containing v or some shortest vw path containing u. A set W of vertices is a (strong) metric generator for G if every pair of vertices of G is (strongly resolved) distinguished by some vertex of W. The smallest cardinality of a (strong) metric generator for G is called the (strong) metric dimension of G. In this article we study the (strong) metric dimension of some families of direct product graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brešar B., Klavžar S., Tepeh Horvat A.: On the geodetic number and related metric sets in Cartesian product graphs. Discrete Math. 308, 5555–5561 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cáceres J., Hernando C., Mora M., Pelayo I.M., Puertas M.L., Seara C., Wood D.R.: On the metric dimension of Cartesian product of graphs. SIAM J. Discrete Math. 21(2), 273–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cáceres J., Puertas M.L., Hernando C., Mora M., Pelayo I.M., Seara C.: Searching for geodetic boundary vertex sets. Electron. Notes Discrete Math. 19, 25–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chartrand G., Erwin D., Johns G.L., Zhang P.: Boundary vertices in graphs. Discrete Math. 263, 25–34 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hammack R., Imrich W., Klavžar S.: Handbook of product graphs, Discrete mathematics and its applications, 2nd edn. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  6. Harary F., Melter R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Jannesari M., Omoomi B.: The metric dimension of the lexicographic product of graphs. Discrete Math. 312(22), 3349–3356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khuller S., Raghavachari B., Rosenfeld A.: Landmarks in graphs. Discrete Appl. Math. 70, 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim S.-R.: Centers of a tensor composite graph. Congr. Numer. 81, 193–203 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Kuziak, D., Yero, I.G., Rodríguez-Velázquez, J.A.: Closed formulae for the strong metric dimension of lexicographic product graphs. Discuss. Math. Graph Theory (2016, To appear)

  11. Kuziak D., Yero I.G., Rodríguez-Velázquez J.A.: On the strong metric dimension of the strong products of graphs. Open Math. (formerly Cent. Eur. J. Math.) 13, 64–74 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Kuziak D., Yero I.G., Rodríguez-Velázquez J.A.: Erratum to “On the strong metric dimension of the strong products of graphs”. Open Math. 13, 209–210 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Kuziak D., Yero I.G., Rodríguez-Velázquez J.A.: On the strong metric dimension of corona product graphs and join graphs. Discrete Appl. Math. 161, 1022–1027 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller D.J.: The categorical product of graphs. Can. J. Math. 20, 1511–1521 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oellermann O.R., Peters-Fransen J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155, 356–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rodríguez-Velázquez J.A., Kuziak D., Yero I.G., Sigarreta J.M.: The metric dimension of strong product graphs. Carpathian J. Math. 31(2), 261–268 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Rodríguez-Velázquez J.A., Yero I.G., Kuziak D., Oellermann O.R.: On the strong metric dimension of Cartesian and direct products of graphs. Discrete Math. 335, 8–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saputro S., Simanjuntak R., Uttunggadewa S., Assiyatun H., Baskoro E., Salman A., Bača M.: The metric dimension of the lexicographic product of graphs. Discrete Math. 313(9), 1045–1051 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sebő A., Tannier E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Slater, P.J.: Leaves of trees. In: Proceeding of the 6th Southeastern conference on combinatorics, graph theory, and computing. Congr. Numer., vol. 14, pp. 549–559 (1975)

  21. Vetrik, T., Ahmad, A.: Computing the metric dimension of the categorical product of some graphs. Int. J. Comput. Math. doi:10.1080/00207160.2015.1109081

  22. Weichsel P.M.: The Kronecker product of graphs. Proc. Am. Math. Soc. 13, 47–52 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yero I.G., Kuziak D., Rodríguez-Velázquez J.A.: On the metric dimension of corona product graphs. Comput. Math. Appl. 61(9), 2793–2798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael G. Yero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuziak, D., Peterin, I. & Yero, I.G. Resolvability and Strong Resolvability in the Direct Product of Graphs. Results Math 71, 509–526 (2017). https://doi.org/10.1007/s00025-016-0563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-016-0563-6

Mathematics Subject Classification

Keywords

Navigation