Skip to main content
Log in

Liouville Theorems for F-Harmonic Maps and Their Applications

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We prove several Liouville theorems for F-harmonic maps from some complete Riemannian manifolds by assuming some conditions on the Hessian of the distance function, the degrees of F(t) and the asymptotic behavior of the maps at infinity. In particular, the results can be applied to F-harmonic maps from some pinched manifolds, and can deduce a Bernstein type result for an entire minimal graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ara M.: Geometry of F-harmonic maps. Kodai Math. 22, 243–263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronszajn N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 36, 235–249 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Baird P.: Stress-energy tensors and the Lichnerowicz Laplacian. J. Geom. Phys. 58, 1329–1342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, S.Y.: Liouville theorem for harmonic maps. Pure Math., vol. 36, pp. 147–151. American Mathematical Society, Providence (1980)

  5. Dong Y.X., Wei S.W.: On vanishing theorems for vector bundle valued p-forms and their applications. Commun. Math. Phys. 304, 329–368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garber W.D., Ruijsennaars S.N.M., Seiler E., Burns D.: On finite action solutions of the nonlinear σ-model. Ann. Phys. 119, 305–325 (1979)

    Article  MathSciNet  Google Scholar 

  7. Greene, R.E., Wu, H.: Function theory on manifolds which posses a pole, Lecture Notes in Mathematics, vol. 699. Springer, Berlin (1979)

  8. Hildebrandt S.: Liouville theorems for harmonic mappings, and an approach to Bernstein theorems. Ann. Math. Stud. 102, 107–131 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Jin Z.R.: Liouville theorems for harmonic maps. Invent. Math. 108, 1–10 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kassi M.: A Liouville theorem for F-harmonic maps with finite F-energy. Electron. J. Differ. Equ. 15, 1–9 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Kazdan J.L.: Unique continuation in geometry. Commun. Pure Appl. Math. 41(5), 667–681 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Otway T.H.: Maps and fields with compressible density. Rend. Sem. Mat. Univ. Padova 111, 133–159 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Otway T.H.: Geometric analysis near and across a sonic curve. In: Bendo, C.V. (eds) New Developments in Mathematical Physics Research, pp. 27–45. Nova Science Publisher, New York (2004)

    Google Scholar 

  14. Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and finiteness results in geometric analysis: a generalization of the Bochner technique. Progress in Mathematics, vol. 266 (2008)

  15. Sealey H.C.J.: Some conditions ensuring the vanishing of harmonic differential forms with applications to harmonic maps and Yang–Mills theory. Math. Proc. Camb. Philos. Soc. 91, 441–452 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simons J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88(2), 62–105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Simon L.: Asymptotic behaviour of minimal graphs over exterior domains. Ann. Inst. Henri Poincaŕe 4(3), 231–242 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Schoen R., Yau S.T.: Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Commun. Math. Helv. 51, 333–341 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xin Y.L.: Differential forms, conservation law and monotonicity formula. Sci. Sin. (Ser. A) XXIX, 40–50 (1986)

    MathSciNet  MATH  Google Scholar 

  20. Yang Y.S.: Classical solutions in the Born–Infeld theory. Proc. R. Soc. Lond. A 456, 615–640 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hezi Lin.

Additional information

Y. Dong was supported by NSFC Grant No 11271071. and H. Lin was supported by NSFC Grant No 11401099.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Lin, H. & Yang, G. Liouville Theorems for F-Harmonic Maps and Their Applications. Results. Math. 69, 105–127 (2016). https://doi.org/10.1007/s00025-015-0480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-015-0480-0

Mathematics Subject Classification

Keywords

Navigation