Skip to main content
Log in

On the Stability of Jordan *-Derivation Pairs

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this article, the Hyers–Ulam stability of Jordan *-derivation pairs for the Cauchy additive functional equation and the Cauchy additive functional inequality is proved. A fixed point method to establish of the stability and the superstability for Jordan *-derivation pairs is also employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alimohammady M., Sadeghi A.: Some new results on the superstability of the Cauchy equation on semigroups. Results Math. 63, 705–712 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almira J.M.: A note on classical and p-adic Fréchet functional equations with restrictions. Results Math. 63, 649–656 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)

    Article  MATH  Google Scholar 

  4. Bodaghi, A., Alias, I.A., Ghahramani, M.H.: Approximately cubic functional equations and cubic multipliers. J. Inequal. Appl. 2011, 9 (2011) (Article No.: 53)

  5. Bodaghi, A., Alias, I.A., Ghahramani, M.H.: Ulam stability of a quartic functional equation. Abstr. Appl. Anal. 2012, 9 (2012) (Article ID: 232630)

  6. Bodaghi A., Eshaghi Gordji M., Paykan K.: Approximate multipliers and approximate double centralizers: a fixed point approach. An. St. Univ. Ovidius Constanta 20(3), 21–32 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bratteli, O.: Derivation, Dissipation and Group Actions on C*-Algebras. In: Lecture Notes in Mathematics, vol. 1229. Springer, Berlin (1986)

  8. Bratteli O., Goodman F.M., Jørgensen P.E.T.: Unbouded derivations tangential to compact groups of automorphisms II. J. Funct. Anal. 61, 247–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cădariu L., Radu V.: Fixed points and the stability of quadratic functional equations. An. Univ. Timisoara Ser. Mat. Inform. 41, 25–48 (2003)

    MATH  Google Scholar 

  10. Cădariu L., Radu V.: On the stability of the Cauchy functional equation: A fixed point approach. Grazer Math. Ber. 346, 43–52 (2004)

    MATH  Google Scholar 

  11. Chang I., Eshaghi Gordji M., Khodaei H., Kim H.: Nearly quartic mappings in β-homogeneous F-spaces. Results Math. 63, 529–541 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diaz J.B., Margolis B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ebadian A., Ghobadipour H.: A fixed point approach to almost double derivations and Lie *-double drivations. Results Math. 63, 409–423 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eshaghi Gordji M., Bodaghi A., Park C.: A fixed point approach to the stability of double Jordan centralizers and Jordan multipliers on Banach algebras. U.P.B. Sci. Bull. Ser. A 73(2), 65–73 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Fechner W.: Stability of a functional inequalities associated with the Jordan–von Neumann functional equation. Aequationes Math. 71, 149–161 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gǎvruta P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)

    Article  MathSciNet  Google Scholar 

  17. Gilányi A.: Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequationes Math. 62, 303–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilányi, A.: (2002) On a problem by K. Nikodem. Math. Inequal. Appl. 5: 707–710

    Google Scholar 

  19. Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  20. Lee S., Jang S.: Unbounded derivations on compact actions of C*-algebras. Commun. Korean Math. Soc. 5, 79–86 (1990)

    Google Scholar 

  21. Monlar L.: Jordan *-derivation pairs on a complex *-algebra. Aequationes Math. 54, 44–55 (1997)

    Article  MathSciNet  Google Scholar 

  22. Moslehian M.S., Rahbarnia F., Sahoo P.K.: Approximate double centralizers are exact double centralizers. Bol. Soc. Mat. Mex. 13, 111–122 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Park, C.: Isomorphisms between C*-ternary algebras. J. Math. Phys. 47,12 (2006) (Article ID: 103512)

    Google Scholar 

  24. Park, C., Bodaghi, A.: On the stability of *-derivations on Banach *-algebras. Adv. Differ. Equ. 2012, 10 (2012) (Article No.: 138)

  25. Park, C., Cho, Y., Han, M.: Functional inequalities associated with Jordan–von Neumann-type additive functional equations. J. Inequal. Appl. 2007, 13 (2007) (Article ID: 41820)

  26. Rassias Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MATH  Google Scholar 

  27. Rätz J.: On inequalities associated with the Jordan–von Neumann functional equation. Aequationes Math. 66, 191–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ulam S.M.: Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York (1940)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abasalt Bodaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodaghi, A., Jang, S.Y. & Park, C. On the Stability of Jordan *-Derivation Pairs. Results. Math. 64, 289–303 (2013). https://doi.org/10.1007/s00025-013-0314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-013-0314-x

Mathematics Subject Classification (2010)

Keywords

Navigation