Abstract
In this article, the Hyers–Ulam stability of Jordan *-derivation pairs for the Cauchy additive functional equation and the Cauchy additive functional inequality is proved. A fixed point method to establish of the stability and the superstability for Jordan *-derivation pairs is also employed.
Similar content being viewed by others
References
Alimohammady M., Sadeghi A.: Some new results on the superstability of the Cauchy equation on semigroups. Results Math. 63, 705–712 (2013)
Almira J.M.: A note on classical and p-adic Fréchet functional equations with restrictions. Results Math. 63, 649–656 (2013)
Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)
Bodaghi, A., Alias, I.A., Ghahramani, M.H.: Approximately cubic functional equations and cubic multipliers. J. Inequal. Appl. 2011, 9 (2011) (Article No.: 53)
Bodaghi, A., Alias, I.A., Ghahramani, M.H.: Ulam stability of a quartic functional equation. Abstr. Appl. Anal. 2012, 9 (2012) (Article ID: 232630)
Bodaghi A., Eshaghi Gordji M., Paykan K.: Approximate multipliers and approximate double centralizers: a fixed point approach. An. St. Univ. Ovidius Constanta 20(3), 21–32 (2012)
Bratteli, O.: Derivation, Dissipation and Group Actions on C*-Algebras. In: Lecture Notes in Mathematics, vol. 1229. Springer, Berlin (1986)
Bratteli O., Goodman F.M., Jørgensen P.E.T.: Unbouded derivations tangential to compact groups of automorphisms II. J. Funct. Anal. 61, 247–289 (1985)
Cădariu L., Radu V.: Fixed points and the stability of quadratic functional equations. An. Univ. Timisoara Ser. Mat. Inform. 41, 25–48 (2003)
Cădariu L., Radu V.: On the stability of the Cauchy functional equation: A fixed point approach. Grazer Math. Ber. 346, 43–52 (2004)
Chang I., Eshaghi Gordji M., Khodaei H., Kim H.: Nearly quartic mappings in β-homogeneous F-spaces. Results Math. 63, 529–541 (2013)
Diaz J.B., Margolis B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)
Ebadian A., Ghobadipour H.: A fixed point approach to almost double derivations and Lie *-double drivations. Results Math. 63, 409–423 (2013)
Eshaghi Gordji M., Bodaghi A., Park C.: A fixed point approach to the stability of double Jordan centralizers and Jordan multipliers on Banach algebras. U.P.B. Sci. Bull. Ser. A 73(2), 65–73 (2011)
Fechner W.: Stability of a functional inequalities associated with the Jordan–von Neumann functional equation. Aequationes Math. 71, 149–161 (2006)
Gǎvruta P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)
Gilányi A.: Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequationes Math. 62, 303–309 (2001)
Gilányi, A.: (2002) On a problem by K. Nikodem. Math. Inequal. Appl. 5: 707–710
Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
Lee S., Jang S.: Unbounded derivations on compact actions of C*-algebras. Commun. Korean Math. Soc. 5, 79–86 (1990)
Monlar L.: Jordan *-derivation pairs on a complex *-algebra. Aequationes Math. 54, 44–55 (1997)
Moslehian M.S., Rahbarnia F., Sahoo P.K.: Approximate double centralizers are exact double centralizers. Bol. Soc. Mat. Mex. 13, 111–122 (2007)
Park, C.: Isomorphisms between C*-ternary algebras. J. Math. Phys. 47,12 (2006) (Article ID: 103512)
Park, C., Bodaghi, A.: On the stability of *-derivations on Banach *-algebras. Adv. Differ. Equ. 2012, 10 (2012) (Article No.: 138)
Park, C., Cho, Y., Han, M.: Functional inequalities associated with Jordan–von Neumann-type additive functional equations. J. Inequal. Appl. 2007, 13 (2007) (Article ID: 41820)
Rassias Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
Rätz J.: On inequalities associated with the Jordan–von Neumann functional equation. Aequationes Math. 66, 191–200 (2003)
Ulam S.M.: Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York (1940)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bodaghi, A., Jang, S.Y. & Park, C. On the Stability of Jordan *-Derivation Pairs. Results. Math. 64, 289–303 (2013). https://doi.org/10.1007/s00025-013-0314-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00025-013-0314-x