Skip to main content
Log in

On Dirichlet Type Problems of Polynomial Dirac Equations with Boundary Conditions

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \({{\bf D}_{\bf x} := \sum_{i=1}^n \frac{\partial}{\partial x_i} e_i}\) be the Euclidean Dirac operator in \({\mathbb{R}^n}\) and let P(X) = a m X m + . . . + a 1 Xa 0 be a polynomial with real coefficients. Differential equations of the form P(D x )u(x) = 0 are called homogeneous polynomial Dirac equations with real coefficients. In this paper we treat Dirichlet type problems of the a slightly less general form P(D x )u(x) = f(x) (where the roots are exclusively real) with prescribed boundary conditions that avoid blow-ups inside the domain. We set up analytic representation formulas for the solutions in terms of hypercomplex integral operators and give exact formulas for the integral kernels in the particular cases dealing with spherical and concentric annular domains. The Maxwell and the Klein–Gordon equation are included as special subcases in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahmann H., Gürlebeck K., Shapiro M., Sprößig W.: On a modified Teodorescu transform. Integr. Trans. Special Funct. 12(3), 213–226 (2001)

    Article  MATH  Google Scholar 

  2. Bernstein, S.: Analytische Untersuchungen in unbeschränkten Gebieten mit Anwendungen auf quaternionische Operatortheorie und elliptische Randwertprobleme. PhD Thesis, Technische Universität Bergakademie Freiberg, Germany (1993)

  3. Brackx F., Delanghe R.: Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. Lond. Math. Soc. 37, 545–576 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Pitman Research Notes 76, Boston-London-Melbourne (1982)

  5. Brackx F., Sommen F., Van Acker N.: Reproducing Bergman kernels in clifford analysis. Complex Var. 24, 191–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constales D., Grob D., Kraußhar R.S.: Reproducing kernel functions of solutions to polynomial Dirac equations in the annulus of the unit ball in \({\mathbb{R}^n}\) and applications to boundary value problems. J. Math. Anal. Appl. 358(2), 281–293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constales D., Kraußhar R.S.: Hilbert Spaces of Solutions to Polynomial Dirac equations, Fourier Transforms and Reproducing Kernel Functions for Cylindrical Domains. Zeitschrift für Analysis und Ihre Anwendungen 24(3), 611–636 (2005)

    Article  MATH  Google Scholar 

  8. Delanghe, R.: On Hilbert modules with reproducing kernel. In: Function theoretic methods for partial differential equations (Proceedings International Symposium, Darmstadt 1976). Lecture Notes in Mathematics, vol. 561. pp. 158–170 (1976)

  9. Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor valued functions. Dordrecht-Boston-London: Kluwer (1992)

  10. Gradshteyn, I., Ryzhik, I.M.: Table of integrals, Series and Products. New York: Academic Press (1980)

  11. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic functions in the plane and n-dimensional space. Birkhäuser Verlag, Basel (2008)

  12. Gürlebeck, K., Sprößig, W.: Quaternionic analysis and elliptic boundary value problems. Basel: Birkhäuser, (1990)

  13. Gürlebeck, K., Sprößig, W.: Quaternionic and clifford calculus for Physicists and Engineers. Wiley, Chichester-New York (1997)

  14. Kähler, U.: Elliptic boundary value problems in bounded and unbounded domains. In: Ryan, J., Struppa, D (eds) Dirac operators in analysis. Pitman Research Notes, Pitman Longman, vol.394, pp. 122–140 (1998)

  15. Kravchenko V.V., Shapiro M.: Quaternionic time-harmonic Maxwell operator. J. Phys. A Math. Gen 28(17), 5017–5031 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kravchenko, V.V., Shapiro, M.: Integral representations for spatial models of mathematical physics. Harlow, Addison Wesley Longman, Boston (1996)

  17. Kravchenko V.V., Castillo P.R.: On the kernel of the Klein–Gordon operator. Zeitschrift für Analysis und ihre Anwendungen 17(2), 261–265 (1998)

    MATH  Google Scholar 

  18. Kravchenko, V.V.: Applied quaternionic analysis. Research and Exposition in Mathematics, vol. 28. Heldermann Verlag, Gremany (2003)

  19. Marmolejo-Olea E., Pérez-Esteva S., Shapiro M.: Modules of solutions of the Helmholtz equation arising from eigenfunctions of the Dirac operator. Bull. Belg. Math. Soc. Simon Stevin 12(2), 175–192 (2005)

    MathSciNet  MATH  Google Scholar 

  20. McIntosh A., Mitrea M.: Clifford algebras and Maxwell’s equations in Lipschitz domains. Math. Methods Appl. Sci. 22(18), 1599–1620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mitrea M.: Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains. J. Math. Anal. Appl. 202(3), 819–842 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ryan J.: Cauchy–Green type formulae in clifford analysis. Trans. Am. Math. Soc. 347(4), 1331–1341 (1995)

    Article  MATH  Google Scholar 

  23. Sommen, F., Zhenyuan, X.: Fundamental solutions for operators which are polynomials in the Dirac operator. In: Clifford algebras and their applications in mathematical physics, Proceedings of the 2nd Workshop, Montpellier (France) 1989, Fundamental Theories of Physics 47, Dordrecht: Kluwer , pp. 313–326 (1992)

  24. Sprößig W.: On decompositions of the clifford valued hilbert space and their applications to boundary value problems. Adv. Appl. Clifford Algebras 5(2), 167–186 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Sprößig W.: Quaternionic analysis and Maxwell’s equations. Cubo Matemática Educacional 7(2), 57–67 (2005)

    MATH  Google Scholar 

  26. Zhenyuan Xu (1991) A function theory for the operator (D − λ). Complex Var. 16:(1):27–42

    Google Scholar 

  27. Zhenyuan Xu: Helmholtz equations and boundary value problems. In: Partial differential equations with complex analysis, Pitman Res. Notes Math. Ser. 262 Longman Sci. Tech., Harlow, pp. 204–214 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Sören Kraußhar.

Additional information

Financial support from BOF/GOA 01GA0405 of Ghent University gratefully acknowledged. Financial support through a Graduate Fellowship (GFK) from RWTH Aachen University gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constales, D., Grob, D. & Kraußhar, R.S. On Dirichlet Type Problems of Polynomial Dirac Equations with Boundary Conditions. Results. Math. 64, 193–213 (2013). https://doi.org/10.1007/s00025-013-0309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-013-0309-7

Mathematics Subject Classification

Keywords

Navigation