Skip to main content
Log in

Equal Quasi-Partition of p-Groups

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let S be a subgroup of a group G. A set \({\Pi= \{H_1, \ldots , H_n\}}\) of subgroups \({H_i (i = 1, \ldots ,n)}\) with \({G=\cup_{H_i\in\Pi}H_i}\) is said to be an equal quasi-partition of G if \({H_i\cap H_j\cong S}\) and \({|H_i|=|H_j|}\) for all \({H_i, H_j\in\Pi}\) with \({i\ne j}\) . In this paper we investigate finite p-groups such that a subset of their maximal subgroups form an equal quasi-partition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer, R.: Partitionen endlicher Gruppen. Math. Z. 75, 333–372 (1960/1961)

  2. Biliotti M.: S-partitions of groups and steiner systems. Ann. Discret. Math. 30, 69–84 (1986)

    Google Scholar 

  3. Cohn J.H.E.: On n-sum groups. Math. Scand. 75, 44–58 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Garonzi, M.: Finite groups that are the union of at most 25 proper subgroups. J. Algebra (2010) To appear

  5. Isaacs I.M.: Equally partitioned groups. Pacific J. Math. 49, 109–116 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kappe, L., Redden, J.: On the covering number of small alternating groups. In: Magidin A., Kappe, L., Morse, R. (eds.) Computational Group Theory and the Theory of Groups, vol.2. American Mathematical Society, Providence (2010)

  7. Kegel O.H.: Nicht-einfache Partitionen Endlicher Gruppen. Arch. Math. 12, 170–175 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Miller, G.A.: Groups in which all the operators are contained in a series of subgroups such that any two have only identity in commun. Bull. Amer. Math. Soc. 17, 446–449 (1906/1907)

    Google Scholar 

  9. Neumann B.H.: Groups covered by finitely many cosets. Publ. Math. Debrecen 3, 227–242 (1954)

    MathSciNet  MATH  Google Scholar 

  10. Neumann B.H.: Groups covered by permutable subsets. J. Lond. Math. Soc. 29, 236–248 (1954)

    Article  MATH  Google Scholar 

  11. Penland, A.D.: Group Covers with Specified Pairwise Intersection, Master’s Thesis, Western Carolina University, Cullowhee (2011)

  12. Serena, L.: On Finite Covers of Groups by Subgroups, Advances in Group Theory 2002, Aracne, pp. 173–198 (2003)

  13. Suzuki M.: On a finite group with a partition. Arch. Math. 12, 241–274 (1961)

    Article  MATH  Google Scholar 

  14. The GAP Group.: Gap—groups, algorithms, and programming, (http://www.gap-system.org) Version 4.4 (2002)

  15. Tomkinson M.J.: Groups as the union of proper subgroups. Math. Scand. 81, 191–198 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Zappa G.: Sulle S-partizioni di un gruppo finito. Ann. Mat. Pura Appl. 74(4), 1–14 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zappa G.: Partitions and other coverings of finite groups. Ill. J. Math. 47(1/2), 571–580 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuval Foguel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanasov, R., Foguel, T. & Penland, A. Equal Quasi-Partition of p-Groups. Results. Math. 64, 185–191 (2013). https://doi.org/10.1007/s00025-013-0308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-013-0308-8

Mathematics Subject Classification (2010)

Keywords

Navigation