Skip to main content
Log in

Unit Balls, Lorentz Boosts, and Hyperbolic Geometry

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The bounded symmetric spaces naturally associated with the Poincaré and Beltrami-Klein models of hyperbolic geometry on the open unit ball B in \({\mathbb{R}^n}\) and with the automorphism group of biholomorphic maps on the open ball in \({\mathbb{C}^n}\) give rise by a standard construction to specialized loop structures (nonassociative groups), which we use to define canonical metrics, called rapidity metrics. We show that this rapidity metric agrees with the classical Poincaré metric resp. the Cayley-Klein metric resp. the Bergman metric. We introduce the Lorentz boost of vectors in B, which turns out to be a loop isomorphism. It induces a similarity of metrics between the rapidity metric of the Einstein or Möbius loop and the trace metric on positive definite matrices restricted to the Lorentz boosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatia R., Holbrook J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413, 594–618 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Friedman Y., Scarr T.: Physical Applications of Homogeneous Balls. Birkhäuser, Basel (2005)

    Book  MATH  Google Scholar 

  3. Glauberman G.: On loops of odd order I. J. Algebra 1, 374–396 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Glauberman G.: On loops of odd order II. J. Algebra 8, 393–414 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Karzel H.: Recent developments on absolute geometries and algebraization by K-loops. Discrete Math. 208(209), 387–409 (1999)

    Article  MathSciNet  Google Scholar 

  6. Kiechle H.: Theory of K-Loops. Lecture Notes in Mathematics, vol. 1778. Springer, Berlin (2002)

    Google Scholar 

  7. Kreuzer A.: Beispiele endlicher und unendlicher K-loops. Results Math. 23, 355–362 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lawson J., Lim Y.: Symmetric sets with midpoints and algebraically equivalent theories. Results Math. 46, 37–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Loos, O.: Symmetric Spaces I: General Theory. Benjamin, New York

  10. Nagy P., Strambach K.: Loops in Group Theory and Lie Theory. Expositions in Math., vol. 35. de Gruyter, Berlin (2002)

    Book  Google Scholar 

  11. Ratcliffe J.: Foundations of Hyperbolic Manifolds. Springer, Berlin (2005)

    Google Scholar 

  12. Rudin W.: Function Theory in the Unit Ball of \({\mathbb{C}^n}\) . Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  13. Sabinin L.V., Sabinina L.L., Sbitneva L.V.: On the notion of a gyrogroup. Aequ. Math. 56, 11–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ungar A.A.: Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  15. Zhu K.: Spaces of Holomorphic Functions on the Unit Ball. Graduate Texts in Math., vol. 226. Springer, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmie Lawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lawson, J. Unit Balls, Lorentz Boosts, and Hyperbolic Geometry. Results. Math. 63, 1225–1242 (2013). https://doi.org/10.1007/s00025-012-0265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-012-0265-7

Mathematics Subject Classification (2010)

Keywords

Navigation