Results in Mathematics

, Volume 63, Issue 1–2, pp 425–433 | Cite as

On the Extensions Preserving the Shape of a Semi-Hölder Function



We present some results concerning the extension of a semi-Hölder real-valued function defined on a subset of a quasi-metric space, preserving some shape properties: the smallest semi-Hölder constant, the radiantness and the global minimum (maximum) of the extended function.

Mathematics Subject Classification (2000)

46A22 54E25 


Quasi-metric space semi-Hölder function radiant function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breckner W.W.: Hölder continuity of certain generalized convex functions. Optimization 28, 201–209 (1994)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Cobzaş, S.: Functional analysis in asymmetric normed spaces, arXiv:1006. 1175v1.Google Scholar
  3. 3.
    Collins J., Zimmer J.: An asymmetric Arzelà-Ascoli theorem. Topol. Appl. 154, 2312–2322 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Doagooei A.R., Mohebi H.: Optimization of the difference of ICR functions. Nonlinear Anal. Theor. Method Appl. 71, 4493–4499 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Flecther P., Lindgren W.F.: Quasi-uniform spaces. Dekker, New York (1982)Google Scholar
  6. 6.
    Krein M.G., Nudel’man A.A.: The Markov moment problem and extremum problems, Nauka, Moscow 1973 (in Russian), English translation. American Mathematical Society, Providence (1977)Google Scholar
  7. 7.
    Künzi H.-P.A.: Nonsymmetric distances and their associated topologies: about the origin of basic ideas in the area of asymmetric topology. In: Aull, C.E., Lowen, R. (eds) Handbook of the history of general topology, pp. 853–968. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  8. 8.
    Martinez-Legaz J.E., Rubinov A.M., Schaible S.: Increasing quasi-concave co-radiant functions with applications in mathematical economics. Math. Oper. Res. 61, 261–280 (2005)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Matouškova E.: Extensions of continuous and Lipschitz functions. Canad. Math. Bull. 43(2), 208–217 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    McShane E.T.: Extension of range of functions. Bull. Am. Math. Soc. 40, 837–842 (1934)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mennucci, A.: On asymmetric distances, Tech. Rep. Scuola Normale Superiore, Pisa (2004)Google Scholar
  12. 12.
    Mustăţa C.: Extension of semi-Lipschitz functions on quasi-metric spaces. Rev. Anal. Numér. Théor. Approx. 30, 61–67 (2001)MathSciNetMATHGoogle Scholar
  13. 13.
    Mustăţa C.: A Phelps type theorem for spaces with asymmetric norms. Bull. Stiinţ. Univ. Baia Mare, Ser. B. Matematică-Informatică 18, 275–280 (2002)MATHGoogle Scholar
  14. 14.
    Mustăţa C.: On the approximation of the global extremum of a semi-Lipschitz function. Mediterr. J. Math. 6, 169–180 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Mustăţa C.: Extensions of semi-Hölder real valued functions on a quasi-metric space. Rev. Anal. Numér. Théor. Approx. 38, 164–169 (2009)MathSciNetMATHGoogle Scholar
  16. 16.
    Phelps R.R.: Uniqueness of Hahn-Banach extension and unique best approximation. Trans. Am. Math. Soc. 95, 238–255 (1960)MathSciNetMATHGoogle Scholar
  17. 17.
    Romaguera S., Sanchis M.: Semi-Lipschitz functions and best approximation in quasi-metric spaces. J. Approx. Theor. 103, 292–301 (2000)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Romaguera S., Sanchis M.: Properties of the normed cone of semi-Lipschitz functions. Acta Math. Hungar 108, 55–70 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.“T. Popoviciu” Institute of Numerical AnalysisCluj-NapocaRomania

Personalised recommendations