Results in Mathematics

, Volume 63, Issue 1–2, pp 209–219 | Cite as

Smarandache n-Structure on CI-Algebras



In this paper, the notions of CI-algebras, Smarandache CI-algebra, Q-Smarandache filters and Q-Smarandache ideals are introduced. We show that a nonempty subset F of a CI-algebra X is a Q-Smarandache filter if and only if \({A(x,y) \subseteq F}\) , which A(x, y) is a Q-Smarandache upper set. Finally, we introduced the concepts of Smarandache BE-algebra, Smarandache dual BCK-algebra and Smarandache n-structure on CI-algebra.

Mathematics Subject Classification (2010)

Primary 06F35 Secondary 03G25 


CI-algebras BE-algebra dual BCK-algebra implication algebra Smarandache CI-algebra Smarandache BE-algebra (Q-Smarandache) Filter (Q-Smarandache) ideal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn S.S., So K.S.: On generalized upper sets in BE-Algebras. Bull. Korean Math. Soc. 46(2), 281–287 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ahn S.S., So K.S.: On ideals and upper sets in BE-algebras. Sci. Math. Jpn. 68(2), 279–285 (2008)MathSciNetMATHGoogle Scholar
  3. 3.
    Borumand Saeid A., Ahadpanah A., Torkzadeh L.: Smarandache BL-algebra. J. Appl. Log. 8, 235–261 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Borzooei R.A., Khosravi Shoar S.: Implication algebras are equivalent to the dual implicative BCK-algebras. Sci. Math. Jpn. 63, 429–431 (2006)MathSciNetMATHGoogle Scholar
  5. 5.
    Jun Y.B.: Smarandache BCI-algebras. Sci. Math. Jpn. 62(1), 137–142 (2005)MathSciNetMATHGoogle Scholar
  6. 6.
    Kandasamy, W.B.V.: Smarandache gropoids.
  7. 7.
    Kim H.K., Yon Y.H.: Dual BCK-algebra and MV-algebra. Sci. Math. Jpn. 66, 247–253 (2007)MathSciNetMATHGoogle Scholar
  8. 8.
    Kim, H.S., Kim, Y.H.: On BE-algebras. Sci. Math. Jpn. 1299–1302 (2006) (online)Google Scholar
  9. 9.
    Kyung H.K.: A Not on CI-algebras. Int. Math. Forum 6(1), 1–5 (2011)MathSciNetMATHGoogle Scholar
  10. 10.
    Meng, B.L.: CI-algebra. Sci. Math. Jpn. 695–701 (2009) (online)Google Scholar
  11. 11.
    Padilla R.: Smarandache algebraic structures. Bull. Pure Appl. Sci. Sect. E Math. Stat. 17(1), 119–121 (1998)Google Scholar
  12. 12.
    Rezaei, A., Borumand Saeid, A.: Some results in BE algebras, Analele Universitaatii Oradea. Fasc. Matematica, Tom (to appear)Google Scholar
  13. 13.
    Walendziak, A.: On commutative BE-algebra. Sci. Math. Jpn. 585–588 (2008) (online)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsShahid Bahonar University of KermanKermanIran
  2. 2.Department of MathematicsPayam Noor UniversityKermanIran

Personalised recommendations