Skip to main content
Log in

On Deformations of Lie Algebroids

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For any Lie algebroid A, its 1-jet bundle \({\mathfrak{J} A}\) is a Lie algebroid naturally and there is a representation \({\pi:\mathfrak{J} A\longrightarrow\mathfrak{D} A}\) . Denote by \({{\rm d}_{\mathfrak{J}}}\) the corresponding coboundary operator. In this paper, we realize the deformation cohomology of a Lie algebroid A introduced by M. Crainic and I. Moerdijk as the cohomology of a subcomplex \({(\Gamma({\rm Hom}(\wedge^\bullet\mathfrak{J} A,A)_{{\mathfrak{D}} A}),{\rm d}_{\mathfrak{J}})}\) of the cochain complex \({(\Gamma({\rm Hom}(\wedge^\bullet\mathfrak{J} A, A)),{\rm d}_\mathfrak{J})}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias Abad, C., Crainic, M.: Representations up to homotopy of Lie algebroids. arXiv:0901.0319

  2. Blaom A.: Geometric structures as deformed infinitesimal symmetries. Trans. Am. Math. Soc. 358, 3651–3671 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blaom, A.: Lie algebroids and Cartan’s method of equivalence. arXiv:math/0509071v3

  4. Chen B., Sheng Y.: Poisson–Nijenhuis structures on oriented 3D-manifolds. Rep. Math. Phys. 61(3), 361–380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Z., Liu Z.: Omni-Lie algebroids. J. Geom. Phys. 60, 799–808 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z., Liu, Z., Sheng, Y.: Dirac structures of omni-Lie algebroids. Int. J. Math. arXiv:0802.3819 (to appear)

  7. Chen, Z., Liu, Z., Sheng, Y.: E-Courant algebroids. Int. Math. Res. Not. (22), 4334–4376 (2010)

  8. Crainic, M., Fernandes, R.L.: Secondary characteristic classes of Lie algebroids. Quantum field theory and noncommutative geometry, pp. 157–176. Lecture Notes in Physics, vol. 662. Springer, Berlin (2005)

  9. Crainic M., Moerdijk I.: Deformation of Lie brackets: cohomological aspects. J. Eur. Math. Soc. (JEMS) 10(4), 1037–1059 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernandes R.: Lie algebroids, holonomy and characteristic classes. Adv. Math. 170(1), 119–179 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fialowski A.: Deformations of Lie algebras. Math. USSR Sbornik 55(2), 467–473 (1986)

    Article  MATH  Google Scholar 

  12. Fialowski, A.: An example of formal deformations of Lie algebras. In: NATO Conf. Proceedings, pp. 375–401. Kluwer (1988)

  13. Fialowski A., Penkava M.: Deformations of Four Dimensional Lie Algebras. Comm. Contemp. Math. 9, 41–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fialowski A., Penkava M.: Moduli spaces of low dimensional real Lie algebras. J. Math. Phys. 49, 073507 (2008)

    Article  MathSciNet  Google Scholar 

  15. Grabowska K., Grabowski J., Urbański P.: Lie brackets on affine bundles. Ann. Global Anal. Geom. 24, 101–130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gracia-Saz A., Mehta R.A.: Lie algebroid structures on double vector bundles and representation theory of Lie algebroids. Adv. Math. 223, 1236–1275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin Q., Liu Z., Sheng Y.: Quadratic deformations of Lie–Poisson structures on \({\mathbb{R}^3}\) . Lett. Math. Phys. 83, 217–229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mackenzie K.: General Theories of Lie Groupoids and Lie Algebroids. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  19. Saunders D.J.: The Geometry of Jet Bundles. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  20. Sheng Y.: Linear Poisson structures on \({\mathbb{R}^4}\) . J. Geom. Phys. 57, 2398–2410 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhe Sheng.

Additional information

Research partially supported by NSFC (10871007,11026046), SRFDP (20100061120096), China Postdoctoral Science Foundation (20090451267) and the Fundamental Research Funds for the Central Universities (200903294).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, Y. On Deformations of Lie Algebroids. Results. Math. 62, 103–120 (2012). https://doi.org/10.1007/s00025-011-0133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-011-0133-x

Mathematics Subject Classification (2010)

Keywords

Navigation