Skip to main content
Log in

Nonclassical Jacobi Polynomials and Sobolev Orthogonality

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the second-order Jacobi differential expression

$$\ell_{\alpha,\beta}[y](x)=\dfrac{-1}{(1-x)^{a}(1+x)^{-1}}\left( (1-x\right) ^{\alpha+1}y^{\prime}(x))^{\prime} \quad(x\in(-1,1));$$

here, the Jacobi parameters are α > −1 and β = −1. This is a nonclassical setting since the classical setting for this expression is generally considered when α, β > −1. In the classical setting, it is well-known that the Jacobi polynomials \({\{P_{n}^{(\alpha,\beta)}\}_{n=0}^{\infty}}\) are (orthogonal) eigenfunctions of a self-adjoint operator T α, β , generated by the Jacobi differential expression, in the Hilbert space L 2((−1,1);(1−x)α(1 + x)β). When α > −1 and β = −1, the Jacobi polynomial of degree 0 does not belong to the Hilbert space L 2((−1,1);(1 − x)α(1 + x)−1). However, in this paper, we show that the full sequence of Jacobi polynomials \({\{P_{n} ^{(\alpha,-1)}\}_{n=0}^{\infty}}\) forms a complete orthogonal set in a Hilbert–Sobolev space W α , generated by the inner product

$$\phi\left( f,g\right) :=f(-1)\overline{g}(-1)+\int\limits_{-1}^{1}f^{\prime }(t)\overline{g}^{\prime}(t)(1-t)^{\alpha+1}dt.$$

We also construct a self-adjoint operator T α , generated by α,−1[·] in W α , that has the Jacobi polynomials \({\{P_{n}^{(\alpha,-1)}\}_{n=0}^{\infty}}\) as eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer N.I., Glazman I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications, New York (1993)

    MATH  Google Scholar 

  2. Alfaro M., Álvarez de Morales M., Rezola M.L.: Orthogonality of the Jacobi polynomials with negative integer parameters. J. Comput. Appl. Math. 145, 379–386 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alfaro M., Rezola M.L., Pérez T.E., Piñar M.A.: Sobolev orthogonal polynomials: the discrete-continuous case. Methods Appl. Anal. 6, 593–616 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Álvarezde Morales M., Pérez T.E., Piñar M.A.: Sobolev orthogonality for the Gegenbauer polynomials \({\{C_{n}^{(-N+1/2)}\}_{n\geq0}}\). J. Comput. Appl. Math. 100, 111–120 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bruder, A.: Applied Left-Definite Theory: Jacobi Polynomials, Their Sobolev Orthogonality, and Self-Adjoint Operators. Ph.D. Thesis. Baylor University, Waco, TX (2009)

  6. Chisholm R.S., Everitt W.N., Littlejohn L.L.: An integral operator inequality with applications. J. Inequal. Appl. 3, 245–266 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Chihara T.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  8. Dunford N., Schwartz J.T.: Linear Operators, Part II. Wiley Interscience, New York (1963)

    MATH  Google Scholar 

  9. Everitt W.N., Kwon K.H., Littlejohn L.L., Wellman R., Yoon G.J.: Jacobi–Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression. J. Comput. Appl. Math. 208, 29–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Everitt W.N., Littlejohn L.L., Wellman R.: The Sobolev orthogonality and spectral analysis of the Laguerre polynomials \({\{L_{n}^{-k}\}}\) for positive integers k. J. Comput. Appl. Math. 171, 199–234 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kwon K.H., Lee D.W., Littlejohn L.L.: Sobolev orthogonal polynomials and second order differential equations II. Bull. Korean Math. Soc. 33(1), 135–170 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Kwon K.H., Littlejohn L.L.: Sobolev orthogonal polynomials and second-order differential equations. Rocky Mountain J. Math. 28(2), 547–594 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Littlejohn L.L., Wellman R.: A general left-definite theory for certain self-adjoint operators with applications to differential equations. J. Differ. Equ. 181, 280–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Naimark M.A.: Linear Differential Operators II. Frederick Ungar Publishing Co., New York (1968)

    MATH  Google Scholar 

  15. Rainville E.D.: Special Functions. Chelsea Publishing Co., New York (1960)

    MATH  Google Scholar 

  16. Szegö, G.: Orthogonal polynomials, vol. 23. American Mathematical Society Colloquium Publications, Providence, Rhode Island (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bruder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruder, A., Littlejohn, L.L. Nonclassical Jacobi Polynomials and Sobolev Orthogonality. Results. Math. 61, 283–313 (2012). https://doi.org/10.1007/s00025-011-0102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-011-0102-4

Mathematics Subject Classification (2010)

Navigation