Skip to main content
Log in

On Non-additive Probabilistic Inequalities of Hölder-type

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Non-additive measure is a generalization of additive probability measure. Integral inequalities play important roles in classical probability and measure theory. Some well-known inequalities such as the Minkowski inequality and the Hölder inequality play important roles not only in the theoretical area but also in application. Non-additive integrals are useful tools in several theoretical and applied statistics which have been built on non-additive measure. For instance, in decision theory and applied statistics, the use of the non-additive integrals can be envisaged from two points of view: decision under uncertainty and multi-criteria decision-making. In fact, the non-additive integrals provide useful tools in many problems in engineering and social choice where the aggregation of data is required. In this paper, Hölder and Minkowski type inequalities for semi(co)normed non-additive integrals are discussed. The main results of this paper generalize some previous results obtained by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agahi H., Mesiar R., Ouyang Y.: New general extensions of Chebyshev type inequalities for Sugeno integrals. Int. J. Approx. Reason. 51, 135–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agahi H., Mesiar R., Ouyang Y.: Chebyshev type inequalities for pseudo-integrals. Nonlinear Anal. 72, 2737–2743 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agahi H., Mesiar R., Ouyang Y.: Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators. Kybernetika 46, 83–95 (2009)

    MathSciNet  Google Scholar 

  4. Agahi H., Mesiar R., Ouyang Y.: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 161, 708–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agahi H., Mesiar R., Ouyang Y., Pap E., Štrboja M.: Berwald type inequality for Sugeno integral. Appl. Math. Comput. 217, 4100–4108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agahi H., Yaghoobi M.A.: General Hardy type inequality for seminormed fuzzy integrals. Appl. Math. Comput. 216, 1972–1977 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dubois, D., Marichal, J.-L., Prade, H., Roubens, M., Sabbadin, R.: Qualitative decision theory with Sugeno integrals. In: Proceedings of UAI’98, pp. 121–128. (1998)

  8. Dubois D., Prade H., Sabbadin R.: The use of the discrete Sugeno integral in decision making: a survey. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 9, 539–561 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Durante F., Sempi C.: Semicopulae. Kybernetika 41, 315–328 (2005)

    MathSciNet  Google Scholar 

  10. Flores-Franulič A., Romá H.: n-Flores, a Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190, 1178– (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kandel A., Byatt W.J.: Fuzzy sets, fuzzy algebra, and fuzzy statistics. Proc. IEEE 66, 1619–1639 (1978)

    Article  Google Scholar 

  12. Klement E.P., Mesiar R., Pap E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 8, 701–717 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. In: Trends in Logic Studia Logica Library, vol. 8, Kluwer, Dodrecht (2000)

  14. Lu J., Wu K., Lin J.: Fast full search in motion estimation by hierarchical use of Minkowski’s inequality. Pattern Recognit. 31, 945–952 (1998)

    Article  Google Scholar 

  15. Mesiar R.: Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mesiar R., Ouyang Y.: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets Syst. 160, 58–64 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murofushi T., Sugeno M.: Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral. Fuzzy Sets Syst. 42, 57–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ouyang Y., Mesiar R.: On the Chebyshev type inequality for seminormed fuzzy integral. Appl. Math. Lett. 22, 1810–1815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ouyang Y., Mesiar R.: Sugeno integral and the comonotone commuting property. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 17, 465–480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ouyang Y., Mesiar R., Agahi H.: An inequality related to Minkowski type for Sugeno integrals. Inform. Sci. 180, 2793–2801 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ouyang Y., Mesiar R., Li J.: On the comonotonic-*-property for Sugeno integral. Appl. Math. Comput. 211, 450–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Özkan U.M., Sarikaya M.Z., Yildirim H.: Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 21, 993–1000 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pap E., Štrboja M.: Generalization of the Jensen inequality for pseudo-integral. Inform. Sci. 180, 543–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ralescu D., Adams G.: The fuzzy integral. J. Math. Anal. Appl. 75, 562–570 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Román-Flores H., Flores-Franulič A., Chalco-Cano Y.: A Jensen type inequality for fuzzy integrals. Inform. Sci. 177, 3192–3201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saminger S., Mesiar R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 10(Suppl.), 11–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Suárez García F., Gil Álvarez P.: Two families of fuzzy integrals. Fuzzy Sets Syst. 18, 67–81 (1986)

    Article  MATH  Google Scholar 

  28. Sugeno, M.: Theory of fuzzy integrals and its applications. PhD Dissertation, Tokyo Institute of Technology (1974)

  29. Sugeno M., Murofushi T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Weber S.: Measures of fuzzy sets and measures of fuzziness. Fuzzy Sets Syst. 13, 247–271 (1984)

    Article  MATH  Google Scholar 

  31. Weber S.: ⊥-Decomposable measures and integrals for Archimedean t-conorms ⊥. J. Math. Anal. Appl. 101, 114–138 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu C., Wang S., Ma M.: Generalized fuzzy integrals: Part I. Fundamental concepts. Fuzzy Sets Syst. 57, 219–226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao R.: (N) fuzzy integral. J. Math. Res. Exposition 2, 55–72 (1981) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzeh Agahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agahi, H., Eslami, E., Mohammadpour, A. et al. On Non-additive Probabilistic Inequalities of Hölder-type. Results. Math. 61, 179–194 (2012). https://doi.org/10.1007/s00025-010-0087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-010-0087-4

Mathematics Subject Classification (2000)

Keywords

Navigation