Skip to main content
Log in

A Decomposition of the Rotation of Circle

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The paper concerns the dynamics-related properties of the rotation map of a circle (rotation of the plane). A self-similar structure of orbits of the rotation map is established. That is, a possibility of decomposition of orbits of a given rotation map into a finite set of orbits of other such maps is proved—it is shown that every orbit of iterates of the rotation of circle on irrational angle, after linear re-scaling of its argument can be represented as a finite set of such orbits situated on another circles. A pointwise self-similarity of classical trigonometric system is established and an application to Fourier expansion, which emphasizes a possibility of shifting of signals with respect to time, is presented. The free mechanical motion is also considered. A special dynamical spectrum of frequencies or speeds, associated with a given uniform circular or rectilinear motion, is defined. We prove that an appropriate fragmentation of time axis yields a decomposition of a given orbit of the free continuous-time motion into a set of such orbits propagating in new time and such decomposition is consistent with the decomposition of the per time unit discrete motion. Particularly, our theorems assert that due to a piecewise-linear transform of spatial and time variables the rectilinear rays change their direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Mathematical Methods of Classical Mechanics. Nauka, Moscow (1989)

    Google Scholar 

  2. Aubri S.: The twist map, extended Frenkel-Kontorova model and the devil’s staircase. Physica 7D 103, 240–258 (1983)

    Google Scholar 

  3. Bateman, H., Erdelyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)

  4. Billingsley P.: Ergodic Theory and Information. Wiley, London (1965)

    MATH  Google Scholar 

  5. Choquet G.: L’Enseignement de la Geometrie. Hermann, Paris (1964)

    MATH  Google Scholar 

  6. Ellis R.S.: Gravitational lensing: a unique probe of dark matter and dark energy. Philos. Trans. R. Soc. A 368, 967–987 (2010)

    Article  MATH  Google Scholar 

  7. El Naschie M.S.: Time symmetry breaking, duality and Cantorian space–time. Chaos Solitons Fractals 7, 499–518 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hermann M.R.: Sur la conjugation differentiable des diffeomorphismes du circle a des rotation. Publ. Math. Inst. Hautes Etud. Sci. 49, 5–233 (1979)

    Article  Google Scholar 

  9. Hilbert D.: The Foundations of Geometry. Court Publishing, Chicago (1902)

    MATH  Google Scholar 

  10. Infeld E., Rowlands G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Kadanoff L.: Scaling for critical KAM trajectory. Phys. Rev. Lett. 47, 1641 (1981)

    Article  MathSciNet  Google Scholar 

  12. Kadanoff L., Shenker S.J.: Critical behaviour of a KAM trajectory: I. Empirical results. J. Stat. Phys. 27, 631 (1982)

    Article  MathSciNet  Google Scholar 

  13. Khinchin A.Ya.: Three Pearls of Number Theory. Dover, New York (1998)

    Google Scholar 

  14. Kuipers L., Niederreiter H.: Uniform Distribution of Sequences. Wiley, London (1976)

    Google Scholar 

  15. Landau L.D., Lifschitz E.M.: Hydrodynamics. Nauka, Moscow (1988)

    Google Scholar 

  16. Mandelbrot B.B.: The Fractal Geometry of Nature. San Francisco, Freeman (1977)

    Google Scholar 

  17. McKay R.S.: A renormalization group approach to invariant circles in area-preserving maps. Physica 7, 283 (1983)

    MathSciNet  Google Scholar 

  18. Miwa T., Jimbo M., Date E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Nottale, L.: The theory of scale-relativity: non-differentiable geometry and fractal space–time. In: Dubois, D.M. (ed.) Computing Anticipatory Systems, CASYS’03—Sixth International Conference, (Belgium, 2003). AIP Conference Proceedings, vol. 718, pp. 68–95 (2004)

  20. Paladin, G., Vulpiani, A.: Fractal models of 2- and 3-dimensional turbulence. In: Pietroniero, L., Tosatti, E. (eds.) Fractals in Physics. Proc. VI-th Trieste International Symposium on Fractals in Physics. (ICTP, 1985) (1985)

  21. Shahverdian A.Yu.: Boundary behavior of a billiard trajectory in n-dimensional cube. Russ. Math. Surv. 47, 200–202 (1992)

    Article  Google Scholar 

  22. Shahverdian A.Yu.: A finite-difference method for analyzing one-dimensional nonlinear systems. Fractals 8, 49–65 (2001)

    Article  MathSciNet  Google Scholar 

  23. Shahverdian A.Yu.: A decomposition of quasi-oscillators. Asian Eur. J. Math. 2, 681–705 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weyl H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931)

    MATH  Google Scholar 

  25. Yoccoz, J.-C.: Geometric Dynamics. Lect. Notes Math., 1007 (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Shahverdian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahverdian, A.Y. A Decomposition of the Rotation of Circle. Results. Math. 61, 143–177 (2012). https://doi.org/10.1007/s00025-010-0082-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-010-0082-9

Mathematics Subject Classification (2000)

Keywords

Navigation