Skip to main content
Log in

Analytical Solution of Second-Order Hyperbolic Telegraph Equation by Variational Iteration and Homotopy Perturbation Methods

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this research, two analytical methods, namely homotopy perturbation method and variational iteration method are introduced to obtain solutions of the initial value problem of hyperbolic type which is called telegraph equation. Some illustrative examples are presented to show the efficiency of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordan P.M., Puri A.: Digital signal propagation in dispersive media. J. Appl. Phys. 85(3), 1273–1282 (1999)

    Article  MathSciNet  Google Scholar 

  2. Weston V.H., He S.: Wave splitting of the telegraph equation in R3 and its application to inverse scattering. Inverse Probl. 9, 789–812 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banasiak J., Mika J.R.: Singularly perturved telegraph equations with applications in the random walk theory. J. Appl. Math. Stoch. Anal. 11(1), 9–28 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. He J.H., Wu X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. He J.H., Abdou M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 34(5), 1421–1429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abbasbandy S., Darvishi M.T.: A numerical solution of Burgers’ equation by modified Adomian method. Appl. Math. Comput. 163(3), 1265–1272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abbasbandy S., Darvishi M.T.: A numerical solution of Burgers’ equation by time discretization of Adomian’s decomposition method. Appl. Math. Comput. 170(1), 95–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tatari M., Dehghan M.: Numerical solution of Laplace equation in a disk using the Adomian decomposition method. Phys. Scr. 72(5), 345–348 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biazar J., Ebrahimi H.: An approximation to the solution of the hyperbolic equation by the Adomian decomposition and comparison with characteristic method. Appl. Math. Comput. 163, 633–638 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wazwaz A.M.: Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166, 652–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. He J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int. J. Non-linear Mech. 34, 699–708 (1999)

    Article  MATH  Google Scholar 

  12. He J.H.: Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114, 115–123 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan M., Tatari M.: Identifying an unknown function in a parabolic equation with overspecified data via He’s variational iteration method. Chaos Solitons Fractals 36, 157–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shakeri F., Dehghan M.: Numerical solution of a biological population model using He’s variational iteration method. Comput. Math. Appl. 54, 1197–1209 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abbasbandy S.: Numerical solution of non-linear Klein-Gordon equations by variational iteration method. Int. J. Numer. Methods Eng. 70, 876–881 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yildirim, A.: Variational iteration method for modified Camassa-Holm and Degasperis-processing equations. Commun. Numer. Methods Eng. (2008). doi:10.1002/cnm.1154

  17. Ganji D.D., Sadighi A.: Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations. J. Comput. Appl. Math. 207(1), 24–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. He J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-linear Mech. 35(1), 37–43 (2000)

    Article  MATH  Google Scholar 

  19. He J.H.: New Interpretation of homotopy-perturbation method. Int. J. Mod. Phys. B 20(18), 2561–2568 (2006)

    Article  Google Scholar 

  20. He J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135(1), 73–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yildirim, A.: On the solution of the nonlinear Korteweg-de Vries equation by the homotopy perturbation method. Commun. Numer. Methods Eng. (2008). doi:10.1002/cnm.1146

  22. Yildirim, A.: Application of the homotopy perturbation method for the Fokker- Planck equation. Commun. Numer. Methods Eng. (2008). doi:10.1002/cnm.1200

  23. He J.H.: Some asymptotic methods for strongly nonlinear equation. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)

    Article  MATH  Google Scholar 

  24. He, J.H.: Non-perturbative methods for strongly nonlinear problems. Dissertation. de-Verlag im Internet GmbH, Berlin (2006)

  25. Ganji D.D., Sadighi A.: Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Nonlinear Sci. Numer. Simul. 7(4), 413–420 (2006)

    Article  Google Scholar 

  26. He J.H., Guo-cheng W., Austin F.: The variational iteration method which should be followed. Nonlinear Sci. Lett. A 1, 1–30 (2010)

    Google Scholar 

  27. Herisanu N., Marinca V.: A modified variational iteration method for strongly nonlinear problems. Nonlinear Sci. Lett. A 1, 183–192 (2010)

    Google Scholar 

  28. Ariel P.D.: Homotopy perturbation method and the natural convection flow of a third grade fluid through a circular tube. Nonlinear Sci. Lett. A 1, 43–52 (2010)

    Google Scholar 

  29. Golbabai A., Sayevand K.: The homotopy perturbation method for multi-order time fractional differential equations. Nonlinear Sci. Lett. A 1, 147–154 (2010)

    Google Scholar 

  30. El-Azab M.S., El-Gamel M.: A numerical algorithm for the solution of telegraph equations. Appl. Math. Comput. 190, 757–764 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hesameddini E., Latifizadeh H.: An optimal choice of initial solutions in the homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 10, 1389–1398 (2009)

    Article  Google Scholar 

  32. Hesameddini E., Latifizadeh H.: A new vision of the He’s homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 10, 1415–1424 (2009)

    Article  Google Scholar 

  33. Chun C.: Variational iteration method for a reliable treatment of heat equations with ill-defined initial data. Int. J. Nonlinear Sci. Numer. Simul. 9(4), 435–440 (2008)

    Article  Google Scholar 

  34. Gao F., Chi C.: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dehghan M., Shokri A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Partial Differ. Equ. 24(4), 1080–1093 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yildirim.

Additional information

This work was completed with the support of our \({{\rm T}_{\rm E}{\rm X}}\)-pert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raftari, B., Yildirim, A. Analytical Solution of Second-Order Hyperbolic Telegraph Equation by Variational Iteration and Homotopy Perturbation Methods. Results. Math. 61, 13–28 (2012). https://doi.org/10.1007/s00025-010-0072-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-010-0072-y

Mathematics Subject Classification (2000)

Keywords

Navigation