Skip to main content
Log in

Algebraic and Computational Formulas for the Index of Real Analytic Vector Fields

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The signature formula of Eisenbud–Levine and Khimshiashvili for computing the Poincaré–Hopf index of a real analytic vector field at an algebraically isolated singularity is well known. We present in this paper an algebraic formula which allows to compute the index in the non–algebraically isolated case when the complex zeros associated to the complexified vector field have codimension one. We also analyse some instances in the codimension 2 case and describe a computer implementation that permits the calculation of the index in both the algebraically and non–algebraically isolated cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I., Guseĭn-Zade, S.M., Varchenko, A.N.: Singularities of differentiable maps, vol. I. Monographs in Mathematics, vol. 82. Birkhäuser Boston Inc., Boston, MA, 1985, The classification of critical points, caustics and wave fronts, Translated from the Russian by Ian Porteous and Mark Reynolds

  2. Castellanos, V.: Una fórmula algebraica del índice de Poincaré–Hopf para campos vectoriales reales con una variedad de ceros complejos. Ph.D. thesis, Centro de Investigación en Matemáticas, Guanajuato, Gto. México (2000)

  3. Castellanos V.: The index of non algebraically isolated singularities. Bol. Soc. Mat. Mex. 8(2), 141–148 (2002)

    MATH  Google Scholar 

  4. Eisenbud D., Levine H.: An algebraic formula for the degree of a C map germ. Ann. Math. 106, 19–44 (1977)

    Article  MathSciNet  Google Scholar 

  5. Gantmacher, F.R.: The Theory of Matrices, vols. 1, 2. Translated by K. A. Hirsch, Chelsea Publishing Co., New York (1959)

  6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-1—A computer algebra system for polynomial computations (2010). http://www.singular.uni-kl.de

  7. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library, Wiley, New York (1994). Reprint of the 1978 original

  8. Gunning, R.C.: Lectures on Complex Analytic Varieties: Finite Analytic Mappings. Mathematical Notes, No. 14. Princeton University Press, Princeton, NJ (1974)

  9. Khimshiashvili G.: On the local degree of a smooth mapping. Camm. Acad. Sci. Georgian SSR. 85(2), 309–311 (1977)

    MATH  Google Scholar 

  10. Khimshiashvilli G.: Multidimensional residues and polynomial equations. J. Math. Sci. 132(6), 757–804 (2006)

    Article  MathSciNet  Google Scholar 

  11. Lecki, A., Szafraniec, Z.: An algebraic method for calculating the topological degree. Topology in nonlinear analysis (Warsaw, 1994), pp. 73–83. Banach Center Publ., vol. 35. Polish Acad. Sci., Warsaw (1996)

  12. Palis J., de Melo W.: Geometric Theory of Dynamical Systems: An Introduction. Springer, Berlin (1982)

    MATH  Google Scholar 

  13. Spivak M.: A Comprehensive Introduction to Differential Geometry, vol. I, 2nd edn. Publish or Perish Inc., Wilmington (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Castellanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellanos, V., Castorena, A. & Cruz-López, M. Algebraic and Computational Formulas for the Index of Real Analytic Vector Fields. Results. Math. 59, 125–139 (2011). https://doi.org/10.1007/s00025-010-0066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-010-0066-9

Mathematics Subject Classification (2010)

Keywords

Navigation