Skip to main content
Log in

On the Equality Problem of Conjugate Means

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \({I\subset\mathbb{R}}\) be a nonvoid open interval and let L : I 2I be a fixed strict mean. A function M : I 2I is said to be an L-conjugate mean on I if there exist \({p,q\in\,]0,1]}\) and \({\varphi\in CM(I)}\) such that

$$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q) \varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$

for all \({x,y\in I}\). Here L(x, y) : = A χ(x, y) \({(x,y\in I)}\) is a fixed quasi-arithmetic mean with the fixed generating function \({\chi\in CM(I)}\). We examine the following question: which L-conjugate means are weighted quasi-arithmetic means with weight \({r\in\, ]0,1[}\) at the same time? This question is a functional equation problem: Characterize the functions \({\varphi,\psi\in CM(I)}\) and the parameters \({p,q\in\,]0,1]}\), \({r\in\,]0,1[}\) for which the equation

$$L_\varphi^{(p,q)}(x,y)=L_\psi^{(r,1-r)}(x,y)$$

holds for all \({x,y\in I}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.: Lectures on Functional Equations and Their Applications. Mathematics in Science and Engineering, vol. 19. Academic Press, London (1966)

  2. Daróczy Z.: Mean values and functional equations. Differ. Equ. Dyn. Syst. Int. J. Theory Appl. Comput. Simul. 17(1-2), 105–113 (2009)

    Article  Google Scholar 

  3. Daróczy Z., Hajdu G.: On linear combinations of weighted quasi-arithmetic means. Aequationes Math. 69, 58–67 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Daróczy Z., Páles Zs.: Gauss-composition of means and the solution of the Matkowski–Sutô problem. Publ. Math. Debrecen 61(1-2), 157–218 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Daróczy Z., Páles Zs.: Generalized convexity and comparison of mean values. Acta Sci. Math. (Szeged) 71, 105–116 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Daróczy Z., Páles Zs.: On functional equations involving means. Publ. Math. Debrecen 62(3-4), 363–377 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Daróczy Z., Páles Zs.: On means that are both quasi-arithmetic and conjugate arithmetic. Acta Sci. Math. (Szeged) 90(4), 271–282 (2001)

    MATH  Google Scholar 

  8. Głazowska D., Jarczyk W., Matkowski J.: Arithmetic mean as a linear combination of two quasi-arithmetic means. Publ. Math. Debrecen 61(3-4), 455–467 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Hardy G.H., Littlewood J.E., Pólya G.: Inequalities, 1st edn. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  10. Hardy G.H., Littlewood J.E., Pólya G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  11. Jarczyk, J.: On an equation involving weighted quasi-arithmetic means. Acta. Math. Hungarica (submitted)

  12. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach, vol. 489. Państwowe Wydawnictwo Naukowe, Uniwersytet Śla̧ski, Warszawa-Kraków- Katowice (1985)

  13. Losonczi L.: Equality of two variable weighted means: reduction to differential equations. Aequationes Math. 58(3), 223–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Losonczi L.: Equality of Cauchy mean values. Publ. Math. Debrecen 57(1-2), 217–230 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Losonczi L.: Equality of two variable Cauchy mean values. Aequationes Math. 65(1-2), 61–81 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Losonczi L.: Equality of two variable means revisited. Aequationes Math. 71(3), 228–245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Makó Z., Páles Zs.: On the equality of generalized quasi-arithmetic means. Publ. Math. Debrecen 72(3-4), 407–440 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Maksa, Gy., Páles, Zs.: Remarks on the comparison of weighted quasi-arithmetic means. Colloquium Mathematicum (submitted)

  19. Matkowski J.: Invariant and complementary quasi-arithmetic means. Aequationes Math. 57, 87–107 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Páles, Zs.: On the equality of quasi-arithmetic means and Lagrangean means (manuscript)

  21. Sutô O.: Studies on some functional equations I. Tôhoku Math. J. 6, 1–15 (1914)

    Google Scholar 

  22. Sutô O.: Studies on some functional equations II. Tôhoku Math. J. 6, 82–101 (1914)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Daróczy.

Additional information

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK-68040, 81402.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daróczy, Z., Dascăl, J. On the Equality Problem of Conjugate Means. Results. Math. 58, 69–79 (2010). https://doi.org/10.1007/s00025-010-0042-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-010-0042-4

Mathematics Subject Classification (2000)

Keywords

Navigation