Results in Mathematics

, Volume 54, Issue 1–2, pp 75–84

Basic Signature and Applications


DOI: 10.1007/s00025-009-0368-y

Cite this article as:
Hathout, F. & Djaa, M. Results. Math. (2009) 54: 75. doi:10.1007/s00025-009-0368-y


Let M be a compact oriented manifold endowed with two orthogonal Riemannian foliations \({\mathcal{F}}_1\) and \({\mathcal{F}}_2\) respectively of codimensions \(n_1 = 4\ell_1\) and \(n_2 = 4\ell_2\). We prove that the signature Sing(M) of M is equal to \(Sing({\mathcal{F}}_1) · Sing({\mathcal{F}}_2)\) where \(Sing({\mathcal{F}}_1)\) and \(Sing({\mathcal{F}}_2)\) are the basic signatures respectively of the foliations \({\mathcal{F}}_1\) and \({\mathcal{F}}_2\).

Mathematics Subject Classification (2000).

Primary 57R30 Secondary 14F40 


Riemannian foliation basic cohomology basic signature 

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Saida universitySaidaAlgeria

Personalised recommendations