Skip to main content
Log in

Attenuation of High-Frequency Seismic Waves in NW Iran

  • Original Paper
  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We analyzed 872 local earthquakes recorded by 18 seismic stations to estimate P-, S-, and coda-wave quality factors for NW Iran, an active seismic and geothermal region in the central part of the Alpine-Himalayan orogeny in western Asia. The calculated frequency-dependent attenuation relations are as follows: Qp = 38 ± 2 f 1.00±0.07, Qs = 79 ± 2 f 0.90±0.17, and Qc = 64 ± 1 f 0.86±0.18 (for a lapse time window length of 50 s). The depth variations of Qc were investigated by estimating Qc at five lapse time windows ranging from 30 to 70 s. The Analysis of Qc in sub-regions surrounding Sahand volcano, Sabalan volcano, and Talesh Mountains indicates that Qc is increasing with the increase of the lapse times. However, the Qc values estimated in the areas surrounding the volcanoes are generally lower than those of the Talesh Mountains, confirming a lithospheric contrast between the warm and weak lithosphere of NW Iran and the more rigid South Caspian Basin lithosphere located beneath the Talesh Mountains. The average Qs/Qp ratio in NW Iran is > 1.6 at all frequencies, likely due to a high degree of heterogeneities and thermal activities in the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Aki, K. (1969). Analysis of seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 74, 615–631.

    Article  Google Scholar 

  • Aki, K. (1980). Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Physics of the Earth and Planetary Interiors, 21, 50–60.

    Article  Google Scholar 

  • Aki, K. (1981). Attenuation of short-period seismic waves in lithosphere. In: Proc. Nato Advanced Inst., August 1980, Oslo, Norway.

  • Aki, K., & Chouet, B. (1975). Origin of coda waves; source, attenuation, and scattering effects. Journal of Geophysical Research, 80, 3322–3342.

    Article  Google Scholar 

  • Akinci, A., Del Pezzo, E., & Ibanez, J. M. (1995). Separation of scattering and intrinsic attenuation in Southern Spain and western Anatolia (Turkey). Geophysical Journal International, 121, 337–353.

    Article  Google Scholar 

  • Akinci, A., & Eyidogan, H. (1996). Frequency dependent attenuation of S and coda waves in Erzincan region (Turkey). Physics of the Earth and Planetary Interiors, 97, 109–119.

    Article  Google Scholar 

  • Akinci, A., Taktak, A. G., & Ergintav, S. (1994). Attenuation of coda waves in Western Anatolia. Physics of the Earth and Planetary Interiors, 87, 55–165.

    Article  Google Scholar 

  • Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes (p. 212). Cambridge University Press.

    Google Scholar 

  • Amiri Fard, R., Javan Doloei, G., Rahimi, H., & Farrokhi, M. (2019). Attenuation of P and S waves in Western part of Iran. Geophysical Journal International, 218(2), 1143–1156.

    Article  Google Scholar 

  • Aziz Zanjani, A., Ghods, A., Sobouti, F., Bergman, E., Mortezanejad, G., Priestley, K., Madanipour, S., & Rezaeian, M. (2013). Seismicity in the western coast of the South Caspian Basin and the Talesh Mountains. Geophysical Journal International, 195(2), 799–814.

    Article  Google Scholar 

  • Bavali, K., Motaghi, K., Sobouti, F., Ghods, A., Abbasi, M., Priestley, K., Mortezanejad, G., & Rezaeian, M. (2016). Lithospheric structure beneath NW Iran using regional and teleseismic travel-time tomography. Physics of the Earth and Planetary Interiors, 253, 97–107.

    Article  Google Scholar 

  • Berberian, M. (1983). The southern Caspian: A compressional depression floored by a trapped, modified oceanic crust. Canadian Journal of Earth Sciences, 20, 163–183.

    Article  Google Scholar 

  • Berberian, M., & Yeats, R. S. (1999). Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological Society of America, 89, 120–139.

    Article  Google Scholar 

  • Bianco, F., Del Pezzo, E., Castellano, M., Ibañez, J., & Di Luccio, F. (2002). Separation of intrinsic and scattering seismic attenuation in the Southern Apennine zone, Italy. Geophysical Journal International, 150, 10–22.

    Article  Google Scholar 

  • Brunet, M. F., Korotaev, M. V., Ershov, A. V., & Nikishin, A. M. (2003). The South Caspian Basin: A review of its evolution from subsidence modeling. Sedimentary Geol., 156, 119–148.

    Article  Google Scholar 

  • Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M., & Iizuka, Y. (2013). Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163, 70–87.

    Article  Google Scholar 

  • Chung, T. W., & Lee, K. (2003). A study of high-frequency QLg-1 in the crust of South Korea. Bulletin of the Seismological Society of America, 93, 1401–1406.

    Article  Google Scholar 

  • Chung, T. W., & Sato, H. (2001). Attenuation of high-frequency P and S waves in the crust of southeastern South Korea. Bulletin of the Seismological Society of America, 91, 1867–1874.

    Article  Google Scholar 

  • Del Pezzo, E., Bianco, F., De Siena, L., & Zollo, A. (2006). Small scale shallow attenuation structure at Mt. Vesuvius, Italy. Physics of the Earth and Planetary Interiors, 157(3–4), 257–268.

    Article  Google Scholar 

  • Del Pezzo, E., Ibanez, J., Morales, J., Akinci, A., & Maresca, R. (1995). Measurements of intrinsic and scattering seismic attenuation in the crust. Bulletin of the Seismological Society of America, 85, 1373–1380.

    Article  Google Scholar 

  • Djamour, Y., Vernant, P., Nankali, H. R., & Tavakoli, F. (2011). NW Iran-eastern Turkey present-day kinematics: Results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307(1–2), 27–34.

    Article  CAS  Google Scholar 

  • Farrokhi, M., & Hamzehloo, H. (2017). Body wave attenuation characteristics in the crust of Alborz region and North Central Iran. Journal of Seismology, 21(4), 631–646.

    Article  Google Scholar 

  • Farrokhi, M., Hamzehloo, H., Rahimi, H., & Zadeh, M. A. (2016). Separation of intrinsic and scattering attenuation in the crust of central and eastern Alborz region, Iran. Physics of the Earth and Planetary Interiors, 253, 88–96.

    Article  Google Scholar 

  • Frankel, A. (1991). Mechanisms of seismic attenuation in the crust: Scattering and anelasticity in New York State, South Africa, and southern California. Journal of Geophysical Research, 96(B4), 6269–6289.

    Article  Google Scholar 

  • Frankel, A., McGarr, A., Bicknell, J., Mori, J., Seeber, L., & Cranswick, E. (1990). Attenuation of high-frequency shear waves in the crust: Measurements from New York state, South Africa, and southern California. Journal of Geophysical Research, 95(B11), 17441–17457.

    Article  Google Scholar 

  • Frankel, A., & Wennerberg, L. (1987). Energy-flux model of the seismic coda: Separation of scattering and intrinsic attenuation. Bulletin of the Seismological Society of America, 77, 1223–1251.

    Article  Google Scholar 

  • Ghods, A., Shabanian, E., Bergman, E., Faridi, M., Donner, S., Mortezanejad, G., & Aziz-Zanjani, A. (2015). The Varzaghan-Ahar, Iran, Earthquake Doublet (M w 6.4, 6.2): Implications for the geodynamics of northwest Iran. Geophysical Journal International, 203(1), 522–540.

    Article  Google Scholar 

  • Ghods, A., & Sobouti, F. (2005). Quality assessment of seismic recording: Tehran seismic telemetry network. Asian Journal of Earth Sciences, 25, 687–694.

    Article  Google Scholar 

  • Giampiccolo, E., Gresta, S., & Rascona, F. (2004). Intrinsic and scattering attenuation from observed seismic codas in southeastern Sicily (Italy). Physics of the Earth and Planetary Interiors, 145(1–4), 55–66.

    Article  Google Scholar 

  • Gök, R., Pasyanos, M. E., & Zor, E. (2007). Lithospheric structure of the continent—continent collision zone: Eastern Turkey. Geophysical Journal International, 169(3), 1079–1088.

    Article  Google Scholar 

  • Gupta, S. C., Teotia, S. S., Rai, S. S., & Gautam, N. (1998). Coda Q estimates in the Koyna region, India. Pure and Applied Geophysics, 153, 713–731.

    Article  Google Scholar 

  • Gusev, A. A., & Abubakirov, I. R. (1999). Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses—II: Application to Kamchatka data. Geophysical Journal International, 136(2), 309–323.

    Article  Google Scholar 

  • Hatzidimitriou, P. M. (1993). Attenuation of coda waves in Northern Greece. Pure and Applied Geophysics, 140, 63–78.

    Article  Google Scholar 

  • Havskov, J., Malone, S., McClurg, D., & Crosson, R. (1989). Coda Q for the state of Washington. Bulletin of the Seismological Society of America, 79(4), 1024–1038.

    Google Scholar 

  • Havskov, J. & Ottemoller, L. (2003). SEISAN: The earthquake analysis software for windows, Solaris, Linux, and Mac OSX Version 8.0, p. 244.

  • Herrmann, R. B., & Kijko, A. (1983). Modeling some empirical vertical component Lg relations. Bulletin of the Seismological Society of America, 73(1), 157–171.

    Article  Google Scholar 

  • Hoshiba, M. (1993). Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope. Journal of Geophysical Research, 98, 15809–15824.

    Article  Google Scholar 

  • Irandoust, M. A., Sobouti, F., & Rahimi, H. (2016). Lateral and depth variations of coda Q in the Zagros region of Iran. Journal of Seismology, 20(1), 197–211.

    Article  Google Scholar 

  • Jahangiri, A. (2007). Post-collisional Miocene adakitic volcanism in NW Iran: Geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30, 433–447.

    Article  Google Scholar 

  • Johnston, D. H., & Toksöz, M. N. (1980). Ultrasonic P and S wave attenuation in dry and saturated rocks under pressure. Journal of Geophysical Research: Solid Earth, 85(B2), 925–936.

    Article  Google Scholar 

  • Kaz’min, V. G., & Verzhbitskii, E. V. (2011). Age and origin of the South Caspian Basin. Oceanology, 51, 131–140.

    Article  Google Scholar 

  • Knapp, J. H., & Connor, J. A. (2004). Crustal-scale structure of the South Caspian Basin revealed by deep seismic reflection profiling. Marine and Petroleum Geology, 21, 1073–1081.

    Article  Google Scholar 

  • Kumar, N., Mate, S., & Mukhopadhyay, S. (2014). Estimation of Qp and Qs of Kinnaur Himalaya. Journal of Seismology, 18, 47–59.

    Article  CAS  Google Scholar 

  • Kumar, N., Parvez, I. A., & Virk, H. S. (2005). Estimation of coda wave attenuation for NW Himalayan region using local earthquakes. Physics of the Earth and Planetary Interiors, 151, 243–258.

    Article  Google Scholar 

  • Kumar, R., Bansal, A. R., & Ghods, A. (2020). Estimation of depth to bottom of magnetic sources using spectral methods: Application on Iran’s aeromagnetic data. Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018119.

    Article  Google Scholar 

  • Maggi, A., & Priestley, K. (2005). Surface waveform tomography of the Turkish-Iranian plateau. Geophysical Journal International, 160(3), 1068–1080.

    Article  Google Scholar 

  • Maheri-Peyrov, M., Ghods, A., Abbasi, M., Bergman, E., & Sobouti, F. (2016). ML shear wave velocity tomography for the Iranian Plateau. Geophysical Journal International, 205(1), 179–191.

    Google Scholar 

  • Maheri-Peyrov, M., Ghods, A., Donner, S., Akbarzadeh-Aghdam, M., Sobouti, F., Motaghi, K., & Chen, L. (2020). Upper crustal structure of NW Iran revealed by regional 3-D Pg velocity tomography. Geophysical Journal International, 222(2), 1093–1108.

    Article  Google Scholar 

  • Mahood, M. (2014). Attenuation of high-frequency seismic waves in Eastern Iran. Pure and Applied Geophysics, 171(9), 2225–2240.

    Article  Google Scholar 

  • Mahood, M., Hamzehloo, H., & Doloei, G. (2009). Attenuation of high frequency P and S waves in the crust of the East-Central Iran. Geophysical Journal International, 179, 1669–1678.

    Article  Google Scholar 

  • Mangino, S., & Priestley, K. (1998). The crustal structure of the southern Caspian region. Geophysical Journal International, 133(3), 630–648.

    Article  Google Scholar 

  • Matsunami, K. (1991). Laboratory tests of excitation and attenuation of coda waves using 2-D models of scattering media. Physics of the Earth and Planetary Interiors, 67, 36–47.

    Article  Google Scholar 

  • Mavko, G. T., Mukerji, G. T., & Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis of porous media. Cambridge University Press.

    Book  Google Scholar 

  • Mochuziki, S. (1982). Attenuation in partially saturated rocks. Journal of Geophysical Research, 87, 8598–8604.

    Article  Google Scholar 

  • Moradi, A. S., Hatzfeld, D., & Tatar, M. (2011). Microseismicity and seismotectonics of the North Tabriz fault (Iran). Tectonophysics, 506(1–4), 22–30.

    Article  Google Scholar 

  • Mortezanejad, G., Rahimi, H., Romanelli, F., & Panza, G. F. (2019). Lateral variation of crust and upper mantle structures in NW Iran derived from surface wave analysis. Journal of Seismology, 23(1), 77–108.

    Article  Google Scholar 

  • Motaghi, K., & Ghods, A. (2012). Attenuation of ground-motion spectral amplitudes and its variations across the central Alborz mountains. Bulletin of the Seismological Society of America, 102(4), 1417–1428.

    Article  Google Scholar 

  • Motaghi, K., Shabanian, E., & Kalvandi, F. (2017). Underplating along the northern portion of the Zagros suture zone, Iran. Geophysical Journal International, 210(1), 375–389.

    Article  Google Scholar 

  • Motaghi, K., Tatar, M., Priestley, K., Romanelli, F., Doglioni, C., & Panza, G. F. (2015). The deep structure of the Iranian Plateau. Gondwana Research, 28(1), 407–418.

    Article  Google Scholar 

  • Motavalli-Anbaran, S. H., Zeyen, H., & Ardestani, V. E. (2013). 3D joint inversion modeling of the lithospheric density structure based on gravity, geoid and topography data: Application to the Alborz Mountains (Iran) and South Caspian Basin region. Tectonophysics, 586, 192–205.

    Article  Google Scholar 

  • Mukhopadhyay, S., Sharma, J., Massey, R., & Kayal, J. R. (2008). Lapse time dependence of coda Q in the source region of the 1999 Chamoli earthquake. Bulletin of the Seismological Society of America, 98(4), 2080–2086. https://doi.org/10.1785/0120070258

    Article  Google Scholar 

  • Mukhopadhyay, S., & Tyagi, C. (2008). Variation of intrinsic and scattering attenuation with depth in NW Himalayas. Geophysical Journal International, 172(3), 1055–1065.

    Article  Google Scholar 

  • Naghavi, M., Rahimi, H., Moradi, A., & Mukhopadhyay, S. (2017). Spatial variations of seismic attenuation in the North West of Iranian plateau from analysis of coda waves. Tectonophysics, 708, 70–80.

    Article  Google Scholar 

  • Padhy, S., Subhadra, N., & Kayal, J. R. (2011). Frequency-dependent attenuation of body and coda waves in the Andaman Sea Basin. Bulletin of the Seismological Society of America, 101, 109–125.

    Article  Google Scholar 

  • Priestley, K., Mckenzie, D., Barron, J., Tatar, M., & Debayle, E. (2012). The Zagros core: deformation of the continental lithospheric mantle. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2012GC004435

    Article  Google Scholar 

  • Pulli, J. J. (1984). Attenuation of coda waves in New England. Bulletin of the Seismological Society of America, 4, 1149–1166.

    Google Scholar 

  • Rahimi, H., & Hamzehloo, H. (2008). Lapse time and frequency-dependent attenuation of coda waves in the Zagros continental collision zone in Southwestern Iran. Journal of Geophysics and Engineering, 5, 173–185.

    Article  Google Scholar 

  • Rahimi, H., & Hamzeloo, H. (2009). Estimation of coda and shear wave attenuation in the volcanic area in SE Sabalan Mountain, NW Iran. Acta Geophysica, 58(2), 244–268.

    Article  Google Scholar 

  • Rahimi, H., Motaghi, K., Mukhopadhyay, S., & Hamzehloo, H. (2010). Variation of coda wave attenuation in the Alborz region and central Iran. Geophysical Journal International, 181, 1643–1654.

    Google Scholar 

  • Rautian, T. G., & Khalturin, V. I. (1978). The use of the coda for determination of the earthquake source spectrum. Bulletin of the Seismological Society of America, 68, 923–948.

    Article  Google Scholar 

  • Roecker, S. W., Tucker, B., King, J., & Hartzfield, D. (1982). Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bulletin of the Seismological Society of America, 72, 129–149.

    Article  Google Scholar 

  • Sato, H. (1984). Attenuation and envelope formation of three-component seismograms of small local earthquakes in randomly inhomogeneous lithosphere. Journal of Geophysical Research, 89(B2), 1221–1241.

    Article  Google Scholar 

  • Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth. Springer.

    Book  Google Scholar 

  • Sengör, A. M. C., & Kidd, W. S. F. (1979). Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55(3), 361–376.

    Article  Google Scholar 

  • Shang, T., & Gao, L. (1988). Transportation theory of multiple scattering and its application to seismic coda waves of impulsive source. Scientia Sinica (series b, China), 31, 1503–1514.

    Google Scholar 

  • Sharma, B., Teotia, S. S., & Kumar, D. (2007). Attenuation of P, S, and coda waves in Koyna region, India. Journal of Seismology, 11, 327–344.

    Article  Google Scholar 

  • Singh, S., & Herrmann, R. B. (1983). Regionalization of crustal coda Q in the continental United States. Journal of Geophysical Research, 88(B1), 527–538.

    Article  Google Scholar 

  • Taghipour, K., Khatib, M. M., Heyhat, M., Shabanian, E., & Vaezihir, A. (2018). Evidence for distributed active strike-slip faulting in NW Iran: The Maragheh and Salmas fault zones. Tectonophysics, 742, 15–33.

    Article  Google Scholar 

  • Taghizadeh-Farahmand, F., Sodoudi, F., Afsari, N., & Ghassemi, M. R. (2010). Lithospheric structure of NW Iran from P and S receiver functions. Journal of Seismology, 14(4), 823–836.

    Article  Google Scholar 

  • Talebian, M., & Jackson, J. (2002). Offset on the main recent fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International, 150(2), 422–439.

    Article  Google Scholar 

  • Toksöz, M., Johnston, D. H., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks: I—Laboratory Measurements. Geophysics, 44(4), 681–690.

    Article  Google Scholar 

  • Vernosfaderani, S. L. J., Heidari, R., Mirzaei, N., Rahimi, H., & Meshinchi-Asl, M. (2019). Coda wave attenuation in the northwestern Iran, using short time Fourier transform. Journal of Seismology, 23(5), 1085–1095.

    Article  Google Scholar 

  • Winkler, K. W., & Nur, A. (1982). Seismic attenuation: Effects of pore fluids and frictional-sliding. Geophysics, 47(1), 1–15.

    Article  Google Scholar 

  • Yoshimoto, K., Sato, H., & Ohtake, M. (1993). Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method. Geophysical Journal International, 114, 165–174.

    Article  Google Scholar 

  • Zhao, W. M., Yang, M. Z., Jin, Y. L., Xu, W. J., & Ren, X. M. (2000). Characteristics of coda Q-value in the mid-northern part of Ningxia. ACTA Seismologica Sinica, 13(3), 265–327.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Constantinos Papazachos (Editor), Dr. Majid Mahood and an anonymous reviewer for their valuable and insightful comments and suggestions. The data acquisition by IASBS has been done by partial supports from the Royal Society under the International Collaboration Awards (ICA/R1/180234), NERC under the Earthquakes Without Frontiers project (NE/J019895/1), grant number 91003241 from Iran National Science Foundation (INSF) and Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran. We would like to express our gratitude towards the Institute of Geophysics, University of Tehran for allowing us to access their earthquake data.

Funding

Iran National Science Foundation, 91003241, Khalil Motaghi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Zarunizadeh.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarunizadeh, Z., Motaghi, K. & Rahimi, H. Attenuation of High-Frequency Seismic Waves in NW Iran. Pure Appl. Geophys. (2024). https://doi.org/10.1007/s00024-024-03496-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00024-024-03496-y

Keywords

Navigation