Skip to main content
Log in

Tectonic elements and structural framework deduced from magnetic data of the Southern Desert, Iraq

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Iraq Southern Desert (SD) needs detailed studies to explore the subsurface, especially the deep and concealed basement. The aim of this work is to interpret the airborne magnetic survey data of the SD, which has a thick Phanerozoic sedimentary cover. The basement has not been imaged by deep seismic or even accessed by exploration wells. Magnetic edge-detection filters: total horizontal gradient, improved logistic, and second-vertical gradient (in the form of the signum transform) are utilized to help define the structural framework of the basement. The results of edge-detection filters are utilized in determining basement-dominated fault systems and aid in defining magnetic susceptibility boundaries. We have found a remarkable relationship between the interpreted fault systems and previously drilled hydrocarbon wells that could be used to indicate fault-bound structural traps. The results of edge filters also show linear clustering of magnetic structures that may indicate a distinctive phenomenon characterized old and reworked basement. The calculated magnetic susceptibilities utilizing two-dimensional forward modeling are consistent with metamorphic rocks and igneous intrusions. Further, two north–south-trending magnetic zones are displaced by a northeast-southwest-trending strike-slip movement. These zones are here considered as the northward projection of the Ediacaran Al Amar Suture in Iraq. We suggest a novel approach that combines edge-detection filters with a depth estimation method that can be successfully applied to discovering the stable (inner) parts of platforms with deep and concealed basements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The magnetic data belongs to GEOSURV and cannot be used without prior permission.

References

  • Abdulrahim, H., & Al-Rahim, A. M. (2019). Determinations of the depths to magnetic sources over Al-Ma′aniyah depression area-southwest Iraq using the aeromagnetic data and their tectonic implication. Iraqi Journal of Science, 60(1), 91–102. Available at: https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/597

  • Ajibola, R. F., Wei, Q., Oladotun, S. O., Babatunde, B. D., Mosaad, A. H. A., Claire, D., & Uti, I. M. (2021). Airborne magnetic and radiometric mapping for litho-structural settings and its significance for bitumen mineralization over Agbabu bitumen-belt southwestern Nigeria. Journal of African Earth Sciences, 180, 104222. https://doi.org/10.1016/j.jafrearsci.2021.104222

    Article  Google Scholar 

  • Al-Bahadily, H. A., Al-Rahim, A. M., & Long, A. J. (2024). Postulated Precambrian basement of the Iraq Southern Desert: A new look utilizing magnetic data. In: Çiner, A., et al. Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology. MedGU 2021. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-43218-7_78

  • Al-Bahadily, H. A., Al-Rahim, A. M., & Smith, R. S. (2023). Determination of reactivated regions and faults in the Iraq Southern Desert with the new edge technique, inverse tilt angle of second-gradients (ITAS). Acta Geophysica. https://doi.org/10.1007/s11600-023-01176-4

    Article  Google Scholar 

  • Al-Banna, A. Sh., & Ali, K. K. (2018). The transition tectonic zone between the two parts of the platform in Iraq: A review study. Iraqi Journal of Science, 59(2C), 1086–1092. Available at: https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/418

  • Al-Rahim, A. M. (2017). Enhance the delineation of masked structures in southern Iraq by applying the biharmonic operator to their gravity field. Iraqi Journal of Science, 58(1A), 79–87. Available at: https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6203

  • Al-Rahim, A. M., & Abdulrahim, H. (2021). Gravity study using multi-2.5D modeling and 3D Ma’aniyah depression, southwest of Iraq. Iraqi Geological Journal, 54(2D), 113–124.

    Article  Google Scholar 

  • Aqrawi, A. A. M. (1998). Paleozoic stratigraphy and petroleum systems of the western and southwestern deserts of Iraq. GeoArabia, 3, 229–248.

    Article  Google Scholar 

  • Aqrawi, A. A. M., Goff, J. C., Horbury, A., & Sadooni, F. N. (2010). The petroleum geology of Iraq (p. 424). Scientific Press.

    Google Scholar 

  • Buday, T. (1980). The regional geology of Iraq. Stratigraphy and palaeogeography (Vol. 1). Iraq: Dar Al-Kutub Publishing House, University of Mosul.

    Google Scholar 

  • Clark, D. A., & Emerson, J. B. (1991). Notes on rock magnetization characteristics in applied geophysical studies. Exploration Geophysics, 22(3), 547–555. https://doi.org/10.1071/EG991547

    Article  Google Scholar 

  • Cordell, L. (1979). Gravimetric expression of graben faulting in Santa Fecountry and the Espanola Basin. New Mexico Geol. Soc. Guidebook, 30th Field Conf., New Mexico (pp. 59–64).

  • De Souza, J., & Ferreira, F. J. F. F. (2015). The application of the Signum transform to the interpretation of magnetic anomalies due to prismatic bodies. ASEG Extended Abstracts, 1, 1–5. https://doi.org/10.1071/ASEG2015ab190

    Article  Google Scholar 

  • Ekwok, S. E., Eldosouky, A. M., Ben, U. C., Alzahrani, H., Abdelrahman, K., Achadu, O.-I.M., Pham, L. T., Akpan, A. E., & Gómez-Ortiz, D. (2022a). Application of high-precision filters on airborne magnetic data: A case study of the Ogoja Region, Southeast Nigeria. Minerals, 12, 1227. https://doi.org/10.3390/min12101227

    Article  Google Scholar 

  • Ekwok, S. E., Eldosouky, A. M., Ben, U. C., Achadu, O. I. M., Akpan, A. E., Othman, A., & Pham, L. T. (2023). An integrated approach of advanced methods for mapping geologic structures and sedimentary thickness in Ukelle and adjoining region (Southeast Nigeria). Earth Sciences Research Journal, 27(3), 251–258. https://doi.org/10.15446/esrj.v27n3.105868

    Article  Google Scholar 

  • Ekwok, S. E., Achadu, O.-I.M., Akpan, A. E., Eldosouky, A. M., Ufuafuonye, C. H., Abdelrahman, K., & Gómez-Ortiz, D. (2022b). Depth estimation of sedimentary sections and basement rocks in the Bornu Basin, Northeast Nigeria using high-resolution airborne magnetic data. Minerals, 12, 285. https://doi.org/10.3390/min12030285

    Article  CAS  Google Scholar 

  • Eldosouky, A. M., Elkhateeb, S. O., Mahdy, A. M., Saad, A. A., Fnais, M. S., Abdelrahman, K., & Andráš, P. (2022a). Structural analysis and basement topography of Gabal Shilman area, South Eastern Desert of Egypt, using aeromagnetic data. Journal of King Saud University-Science. https://doi.org/10.1016/j.jksus.2021.101764

    Article  Google Scholar 

  • Eldosouky, A. M., Pham, L. T., Abdelrahman, K., Fnais, M. S., & Gomez-Ortiz, D. (2022b). Mapping structural features of the Wadi Umm Dulfah area using aeromagnetic data. Journal of King Saud University-Science. https://doi.org/10.1016/j.jksus.2021.101803

    Article  Google Scholar 

  • Eldosouky, A. M., Pham, L. T., Duong, V.-H., Ghomsi, F. E. K., & Henaish, A. (2022c). Structural interpretation of potential field data using the enhancement techniques: A case study. Geocarto International. https://doi.org/10.1080/10106049.2022.2120548

    Article  Google Scholar 

  • Eldosouky, A. M., Pham, L. T., & Henaish, A. (2022d). High precision structural mapping using edge filters of potential field and remote sensing data: A case study from Wadi Umm Ghalqa area South Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 25(2), 501–513. https://doi.org/10.1016/j.ejrs.2022.03.001

    Article  Google Scholar 

  • Evjen, H. M. (1936). The place of the vertical gradient in gravitational interpretations. Geophysics, 1(1), 127–136. https://doi.org/10.1190/1.1437067

    Article  Google Scholar 

  • Fouad, S. F. (2012). Tectonic map of Iraq, scale 1:1000000 (3rd ed.). Iraq Geological Survey Publications.

    Google Scholar 

  • Hamimi, Z., Eldosouky, A. M., Hagag, W., et al. (2023). Large-scale geological structures of the Egyptian Nubian Shield. Science and Reports, 13, 1923. https://doi.org/10.1038/s41598-023-29008-x

    Article  CAS  Google Scholar 

  • Jassim, S. Z. (2006). Late Precambrian development of Arabian Plate. In S. Z. Jassim & J. C. Goff (Eds.), Geology of Iraq (pp. 27–31). Dolin.

    Google Scholar 

  • Jassim, S. Z., & Buday, T. (2006). Tectonic framework. In S. Z. Jassim & J. C. Goff (Eds.), Geology of Iraq (pp. 45–56). Prague: Dolin.

    Google Scholar 

  • Lei, K., Fairhead, J. D., Kerrane, T., & Al-Bassam, K. S. (2011). Reprocessing of Iraq magnetic and gravity data. In International workshop on gravity, electrical and magnetic methods and their applications, Beijing.https://doi.org/10.1190/1.3659043

  • Ma’ala, Kh. A. (2009). Geology of Iraqi Southern Desert. Iraqi Bull. Geol. Min. Special Issue (pp. 35–52)

  • Mohammed, S. A. G. (2006). Megaseismic section across the northeastern slope of the Arabian Plate, Iraq. Geoarabia, 11(4), 77–90.

    Article  Google Scholar 

  • Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., et al. (2005). The historical development of the magnetic method in exploration. Geophysics, 70, 33ND-61ND.

    Article  Google Scholar 

  • Oasis Geosoft Montaj. (2014). SPI.GX. Help guide. Geosoft Inc.

  • Obiora, D. N., Oha, I. A., Ihedike, A. O., et al. (2022). Comparative depth estimates and modeling of magnetic anomalies over the Nkalagu area, Southeastern Nigeria. Modeling Earth Systems and Environment, 8, 1291–1309. https://doi.org/10.1007/s40808-021-01155-y

    Article  Google Scholar 

  • Oguama, B. E., Okeke, F. N., & Obiora, D. N. (2021). Mapping of subsurface structural features in some parts of Anambra Basin, Nigeria, using aeromagnetic data. Modeling Earth Systems and Environment, 7, 1623–1637. https://doi.org/10.1007/s40808-020-00894-8

    Article  Google Scholar 

  • Pham, L. T., Van, V. T., Le, T. S., et al. (2020). Enhancement of potential field source boundaries using an improved logistic filter. Pure and Applied Geophysics, 177, 5237–5249. https://doi.org/10.1007/s00024-020-02542-9

    Article  Google Scholar 

  • Phillips, J. (2000). Locating magnetic contacts: A comparison of the horizontal gradient, analytic signal, and local wavenumber methods. In 70th annual international meeting, society of exploration geophysics, expanded abstracts (pp. 402–405).

  • Saada, A. S., Eldosouky, A. M., Abdelrahman, K., Al-Otaibi, N., Ibrahim, E., & Ibrahim, A. (2021). New insights into the contribution of gravity data for mapping the lithospheric architecture. Journal of King Saud University-Science. https://doi.org/10.1016/j.jksus.2021.101400

    Article  Google Scholar 

  • Salako, K. A., Adetona, A. A., Rafiu, A. A., Alhassan, U. D., Alkali, A., & Aliyu, A., (2022). Determination of sedimentary thickness of parts of middle Benue Trough, Northeast Nigeria, using high-resolution aeromagnetic data. In: Advances in geophysics, tectonics and petroleum geosciences. CAJG 2019. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-73026-0_69

  • Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., Horbury, A. D., & Simmons, M. D. (2001). Arabian plate sequence stratigraphy. GeoArabia Special Publication, 2, 371.

    Google Scholar 

  • Sissakian, V., & Fouad, S. F. (2012). Geological Map of Iraq, scale 1:1000000 (4th ed.). Iraq Geological Survey Publications.

    Google Scholar 

  • Smith, R. S., Thurston, J. B., Dai, T.-F., & MacLeod, I. N. (1998). iSPI™—the improved source parameter imaging method. Geophysical Prospecting, 46, 141–151.

    Article  Google Scholar 

  • Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.

    Article  Google Scholar 

  • Stern, R. J., & Johnson, P. (2010). Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Science Reviews, 101, 29–67.

    Article  Google Scholar 

  • Swain, C. J. (2000). Reduction-to-the-pole of magnetic data with variable field direction, and its stabilisation at low inclinations. Exploration Geophysics, 31, 78–83.

    Article  Google Scholar 

  • Thurston, J., Guillon, J.-C., & Smith, R. (1999). Model-independent depth estimation with the SPI™ method. SEG Expanded Abstracts, 18, 403–406.

    Google Scholar 

  • Thurston, J. B., & Smith, R. S. (1997). Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI™ method. Geophysics, 62, 807–813.

    Article  Google Scholar 

  • Thurston, J. B., Smith, R. S., & Guillon, J.-C. (2002). A multimodel method for depth estimation from magnetic data. Geophysics, 67, 555–561.

    Article  Google Scholar 

  • Verduzco, B., Fairhead, J. D., & Green, C. M. (2004). & MacKenzie, New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–119. https://doi.org/10.1190/1.1651454

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to GEOSURV for the permission of using the magnetic data and software. We are also grateful to Ahmed S. Mousa (Senior Chief Geophysicist at GEOSURV) and John Milsom (Geophysicist, Gladestry Associates, UK) and the two anonymous reviewers for their valuable comments that improved drastically the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Hayder A. Al-Bahadily and Richard S. Smith wrote the main manuscript text and Ali M. Al-Rahim is supervisor who discussed ideas. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hayder Adnan Al-Bahadily.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Bahadily, H.A., Al-Rahim, A.M. & Smith, R.S. Tectonic elements and structural framework deduced from magnetic data of the Southern Desert, Iraq. Pure Appl. Geophys. (2024). https://doi.org/10.1007/s00024-024-03460-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00024-024-03460-w

Keywords

Navigation