Skip to main content
Log in

Soil Characterization Using HVSR and MASW Techniques: A Case Study (Kütahya Dumlupınar University Campus)

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Local soil effect plays an essential role in estimating of earthquake damage that occurs on the existing structures and in the planning and design of the new structures. One of the most critical steps in determining the earthquake design characteristics of a region is related with determining the behavior of the layers that form the soil in that region under cyclic stresses that develop because of earthquakes. Kütahya Dumlupınar University central campus needs constant new construction as the student potential increases each year in addition to the existing building stock. For this reason, data have been collected by using microtremor at 36 points and Multichannel Analysis of Surface Waves (MASW) at 4 points to determine the mechanical and physical characteristics of soil. Data being collected by the single station microtremor method were evaluated by means of horizontal-vertical spectral ratio technique, and the dominant vibration frequency values were evaluated, and the shear wave velocities (Vs30) up to a depth of 30 m were obtained by evaluating the data collected with MASW method. By establishing the relationship of the parameters obtained from both methods with the geological units, the results about the soil characteristics of the study zone were revealed. In accordance, the middle and northwest parts of the study area were composed of rock units when compared to the southeast part, and this boundary was controlled by an antithetic fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The data is available but can be provided by corresponding author upon request.

References

  • Alkan, A., & Akkaya, İ. (2023). Investigation of site properties of the Çaldıran (Van, Eastern Turkey) settlement area using surface wave and microtremor methods. Journal of African Earth Sciences, 197, 104737.

    Article  Google Scholar 

  • Altınok, S., (2010). Kütahya Fay Zonu’nun Kuvaterner Aktivitesi. [Master thesis, Eskişehir Osmangazi University]. Council of Higher Education Thesis Center, No. 266420

  • Altınok, S., Karabacak, V., Yalçıner, C. Ç., Bilgen, A. N., Altunel, E., & Kıyak, N. G. (2012). Kütahya Fay Zonu’nun Holosen Aktivitesi. Türkiye Jeoloji Bülteni, 55(1), 1–18.

    Google Scholar 

  • Ambraseys, N., & Tchalenko, J. S. (1972). Seismotectonic aspect of the Gediz, Turkey, earthquake of March 1972. Geophysical Journal of the Royal Astronomical Society, 30, 229–252. https://doi.org/10.1111/j.1365-246X.1972.tb05811.x

    Article  Google Scholar 

  • Armijo, R., Meyer, B., Hubert-Ferrari, A., & Barka, A. A. (1999). Westward propagation of North Anatolian Fault into the Northern Agean: Timing and kinematics. Geology, 27(3), 267–270. https://doi.org/10.1130/0091-7613(1999)027%3c0267:WPOTNA%3e2.3.CO;2

    Article  Google Scholar 

  • Assaf, J., Molnar, S., Naggar, M. H., & Sirohey, A. (2022). Seismic site characterization in Fraser River Delta in Metropolitan Vancouver. Soil Dynamics and Earthquake Engineering, 161, 107384. https://doi.org/10.1016/j.soildyn.2022.107384

    Article  Google Scholar 

  • Badreldin, H., Abu El-Ata, A., El-Hadidy, M., Cornou, C., Khairy Abd el-aal, A., & Lala, A. M. (2023). Active and passive seismic methods for site characterization in Nuweiba, Gulf of Aqaba. Egypt. Soil Dynamics and Earthquake Engineering, 172, 108002.

    Article  Google Scholar 

  • Bard, P.Y. (1999). Microtremor measurements: A tool for site effects estimations? The effects of Surface Geology on Seismic Motion. Balkema, Rotterdam, ISBN 90 5809 090 2

  • Barka, A., & Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: Deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica, 40(3), 587–610. https://doi.org/10.4401/ag-3892

    Article  Google Scholar 

  • Baş, H. (1986). Domaniç-Tavşanlı-Gediz-Kütahya yörelerinin Tersiyer jeolojisi. Jeoloji Mühendisligi Dergisi, 27, 11–18.

    Google Scholar 

  • Bekler, T., Demirci, A., Ekinci, Y. L., & Büyüksaraç, A. (2019). Analysis of local site conditions through geophysical parameters at a city under earthquake threat: Çanakkale, NW Turkey. Journal of Applied Geophysics, 163, 31–39. https://doi.org/10.1016/j.jappgeo.2019.02.009

    Article  Google Scholar 

  • Bozkurt, E. (2001). Neotectonics of Turkey-a Synthesis. Geodin. Acta, 14, 3–30. https://doi.org/10.1016/S0985-3111(01)01066-X

    Article  Google Scholar 

  • Bozkurt, E., & Mittwede, S. (2005). Introduction: Evoluation of continental extensional tectonics of western Turkey. Geodinamica Acta, 18(3–4), 153–165. https://doi.org/10.3166/ga.18.153-165

    Article  Google Scholar 

  • Büyüksaraç, A., Bektaş, O., Yılmaz, H., & Arısoy, M. O. (2013). Preliminary seismic microzonation of Sivas city Turkey using microtremor and refraction microtremor ReMi measurements. Journal of Seismology, 17, 425–435.

    Article  Google Scholar 

  • Chatelain, J. L., Guillier, B., Cara, F., Duval, A. M., Atakan, K., Bard, P. Y., The WP02 SESAME team. (2008). Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull. Earthquake Eng., 6, 33–74.

    Article  Google Scholar 

  • Daban, Y. (2010). Kütahya İli, Merkez ilçesi, Dumlupınar Üniversitesi Merkez Kampüsü Alanının İmar Planına Esas Jeolojik ve Jeoteknik Etüt Raporu, Kütahya Dumlupınar University Construction Works and Technique Department

  • Demirtaş, R., & Erkmen, C. (2000). Deprem ve Jeoloji. Jeoloji Mühendisleri Odası Yayınları, 52, 91–94.

    Google Scholar 

  • Dikmen, Ü., Arısoy, M. Ö., & Akkaya, İ. (2010a). Offset and linear spread geometry in the MASW method. Journal of Geophysics and Engineering, 7(2), 211–222. https://doi.org/10.1088/1742-2132/7/2/S07

    Article  Google Scholar 

  • Dikmen, Ü., Başokur, A. T., Akkaya, İ, & Arısoy, M. Ö. (2010b). Yüzey dalgalarının çok-kanallı analizi yönteminde uygun atış mesafesinin seçimi. Yerbilimleri, 31(1), 23–32.

    Google Scholar 

  • Dewey, J. F., & Şengör, A. M. C. (1979). Aegean and surrounding regions. Complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90, 84–92. https://doi.org/10.1130/0016-7606(1979)90%3c84:AASRCM%3e2.0.CO;2

    Article  Google Scholar 

  • Emre, Ö., Duman, T., & Özalp, S., (2011). 1/250000 Ölçekli Türkiye Diri Fay Haritaları Serisi Kütahya (NJ 35–4) Paftası, Seri No:15. [Map]. Maden Tetkik ve Arama Genel Müdürlüğü.

  • Fah, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophysical Journal International, 145, 535–549. https://doi.org/10.1046/j.0956-540x.2001.01406.x

    Article  Google Scholar 

  • Field, E. H., & Jacob, K. H. (1993). The Theoretical Response of Sedimentary Layers to Ambient Seismic Noise. Geophys. Res. Let., 20, 2925–2928. https://doi.org/10.1029/93GL03054

    Article  Google Scholar 

  • Field, E. H., & Jacob, K. H. (1995). A comparison and test of various site response estimation techniques, including three that are not reference site dependent. Bull. Seism. Soc. Am., 85(4), 1127–1143. https://doi.org/10.1785/BSSA0850041127

    Article  Google Scholar 

  • Flerit, F., Armijo, R., King, G., & Meyer, B. (2004). The mechanical interaction between the propagating North Anatolian Fault and the back-arc extension in the Aegean. Earth and Planetary Science Letters, 224(3–4), 347–362. https://doi.org/10.1016/j.epsl.2004.05.028

    Article  CAS  Google Scholar 

  • Gallipoli, M. R., Mucciarelli, M., Eeri, M., Gallicchio, S., Tropeano, M., & Lizza, C. (2004). Horizontal to vertical spectral ratio (HVSR) measurements in the area damaged by the 2002 Molise, Italy. Earthquake. Earthq Spect., 20, 81–93. https://doi.org/10.1193/1.1766306

    Article  Google Scholar 

  • Ganas, A., & Parsons, T. (2009). Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. J. Geophys. Res. Solid Earth. https://doi.org/10.1029/2008JB005599

    Article  Google Scholar 

  • Geopsy, (1997). Geophysical signal database for noise array processing. www.geopsy.org Accessed June 2021.

  • Gosar, A., & Roser, J. (2010). Microtremor study of side effects and soil-structure resonance in the city of Ljubljana (central Slovenia). Bull. Earthquake Eng., 8, 571–592. https://doi.org/10.1007/s10518-009-9113-x

    Article  Google Scholar 

  • Gouveia, F., Lopes, I., & Gomes, R. C. (2016). Deeper Vs profile from joint analysis of Rayleigh wave data. Engineering Geology, 202, 85–98.

    Article  Google Scholar 

  • Guillier, B., Atakan, K., Chatelain, J.-L., Havskov, J., Ohrnberger, M., Cara, F., Duval, A.-M., Zacharopoulos, S., Teves-Costa, P., The SESAME Team. (2008). Influence of instruments on the H/V spectral ratios of ambient vibrations. Bull. Earthquake Eng., 6, 3–31.

    Article  Google Scholar 

  • Gürboğa, Ş., Aktürk, Ö. & Bozkurt, E., (2015). Kütahya Fay Zonu’nun Paleosismolojisi. Abstracts 68th Geological Congress of Turkey.

  • Hayashi, K. (2008). Development of surface-wave methods and its application to site investigations. Kyoto University Research Information Repository. https://doi.org/10.14989/doctor.k13774

    Article  Google Scholar 

  • Imposa, S., Motta, E., Capilleri, P., & Imposa, G., (2016, March). HVSR and MASW seismic survey for characterizing the local seismic response: a case study in Catania area (Italy). 1 st IMEKO TC-4 International Workshop on Metrology for Geotechnics Benevento, Italy, IMEKO-TC4-GEO-2016–17.pdf.

  • Jackson, J. A., & McKenzie, D. (1984). Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society, 77(1), 185–264. https://doi.org/10.1111/j.1365-246X.1984.tb01931.x

    Article  Google Scholar 

  • Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., Brun, J., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monié, P., Gueydan, F., Okay, A. I., Oberhänsli, R., … Driussi, O. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1–33. https://doi.org/10.1016/j.tecto.2012.06.011

    Article  Google Scholar 

  • Kalafatçıoğlu, A., (1964). Balıkesir Kütahya Arasındaki Bölgenin Jeolojisi. Maden Teknik Arama Enstitüsü, Türkiye.

  • Kanai, K., & Tanaka, T. (1961). On microtremors VIII. Bull Earthquake Res Inst, 39, 97–114.

    Google Scholar 

  • Kanlı, A. I., Tildy, P., Pro’nay, Z., Pınar, A., & Hermann, L. (2006). Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophysical Journal International, 165, 223–235. https://doi.org/10.1111/j.1365-246X.2006.02882.x

    Article  Google Scholar 

  • Kaplan, M., (2014). Neotectonics and seismicity of Earstern Simav Graben, Kütahya-Turkey. [Master thesis, Middle East Technical University]. Council of Higher Education Thesis Center, No. 385069.

  • Karabulut, S. (2018). Soil classification for seismic site effect using masw and remi methods; a case study from Western Anatolia (Dikili -İzmir). Journal of Applied Geophysics, 150, 254–266. https://doi.org/10.1016/j.jappgeo.2018.01.011

    Article  Google Scholar 

  • Kawase, H., Mori, Y., & Nagashima, F. (2018). Diference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the difuse feld concept. Earth, Planets and Space, 70, 1. https://doi.org/10.1186/s40623-017-0766-4

    Article  Google Scholar 

  • Kezer, Z., (2019). Kütahya Grabeni’nin Tektonik Jeomorfolojisi (Batı Anadolu). [Master thesis, Hacettepe University]. Council of Higher Education Thesis Center, No. 589208.

  • Koçyiğit, A., & Bozkurt, E., (1997). Kütahya-Tavşanlı Çöküntü Alanının Neotektonik Özellikleri. TUBİTAK Araştırma Projesi, No: YDABÇAG-126, 78s.

  • Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88, 228–241. https://doi.org/10.1785/BSSA0880010228

    Article  Google Scholar 

  • Lachet, C., & Bard, P. Y. (1994). Numerical and theoretical investigations on the possibilities and limitations of the Nakamura’s technique. Journal of Physics of the Earth, 42(5), 377–397. https://doi.org/10.4294/jpe1952.42.377

    Article  Google Scholar 

  • Le Pichon, X., Chamot-Rooke, N., Lallemant, S., Noomen, R., & Veis, G. (1995). Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics. J. Geophys. Res. Solid Earth, 100(B7), 12675–12690.

    Article  Google Scholar 

  • Lermo, J., & Chavez-Garcia, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83(5), 1574–1594. https://doi.org/10.1785/BSSA0830051574

    Article  Google Scholar 

  • Lermo, J., Francisco, S., & Chavez-Garcia, J. (1994). Are microtremors useful in the response evoluation? Bulletin of the Seismological Society of America, 84(5), 1350–1364. https://doi.org/10.1785/BSSA0840051350

    Article  Google Scholar 

  • Louie, J. N. (2001). Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull. Seismol. Soc. Amer., 91(2), 347–364.

    Article  Google Scholar 

  • Maghami, S., Sohrabi-Bidar, A., Bignardi, S., Zarean, A., & Kamalian, M. (2021). Extracting the shear wave velocity structure of deep alluviums of “Qom” Basin (Iran) employing HVSR inversion of microtremor recordings. Journal of Applied Geophysics, 185, 104246.

    Article  Google Scholar 

  • Martinez-Pagan, P., Navarro, M., Perez-Cuevas, J., Alcala, F. J., Garcia-Jerez, A., & Sandoval, S. (2014). Shear-wave velocity based seismic microzonation of Lorca city (SE Spain) from MASW analysis. Near Surf Geophys, 12, 739–749. https://doi.org/10.3997/1873-0604.2014032

    Article  Google Scholar 

  • McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x

    Article  Google Scholar 

  • McKenzie, D. (1978). Active tectonics of the Alpine-Himalayan belt: The Agean Sea and surrounding region. Geophysical Journal International, 55, 217–254. https://doi.org/10.1111/j.1365-246X.1978.tb04759.x

    Article  Google Scholar 

  • Meijer, P. T., & Wortel, M. J. R. (1997). Present-day dynamics of the Aegean region: A model analysis of the horizontal pattern of stress and deformation. Tectonics, 16, 879–895.

    Article  Google Scholar 

  • Mercier, J., Sorel, D., Vergely, P., & Simeakis, K. (1989). Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Research, 2(1), 49–71. https://doi.org/10.1111/j.1365-2117.1989.tb00026.x

    Article  Google Scholar 

  • Miller, R. D., Xia, J., Park, C. B., & Ivanov, J. M. (1999). Multichannel analysis of surface waves to map bedrock. Leading Edge, Kansas Geological Survey., 18, 1392–1396. Index ID: 70021214.

    Article  Google Scholar 

  • Monjardin, C. E., & Medina, A. B. (2023). Comparative analysis of Geotechnical and Geophysical Investigations for average shear wave velocity in Metro Manila. Energy Reports, 9(2), 38–47. https://doi.org/10.1016/j.egyr.2022.11.153

    Article  Google Scholar 

  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports. 30, 1, 25–33, ISSN: 0033–9008.

  • Nakamura, Y. (2000). Clear identification of the fundamental idea of Nakamura's technique and its applications. 12th World conference on earthquake engineering, New Zealand, Paper No. 2656.

  • Nazarian, S., Stokoe, K. H., & Hudson, W. R. (1983). Use of spectral analysis of surface wave method for determination of moduli and thickness of pavement. Transportation Research Record, 930, 38–45.

    Google Scholar 

  • NEHRP, (1997). Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. FEMA-303, Prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, DC.

  • Okada, H. (2003). The Microtremor Survey Method Geophysical Monograph Series No. 12. Society of Exploration Geophysicists, Tulsa, ISBN 1–56080–120–4.

  • Okada, H. (2006). Theory of efficient array observations of microtremors with special reference to the SPAC method. Exploration Geophys., 37, 73–85. https://doi.org/10.1071/EG06073

    Article  Google Scholar 

  • Ohmachi, T., Nakamura, Y., & Toshinawa, T. (1991). Ground Motion Characteristics in the San Francisco Bay Area detected by Microtremor Measurements, 2nd. Int. Conf. on Recent Adv. In Geot. Earth. Eng. & Soil Dyn., 11–15 March, St. Louis, Missouri: 1643–1648.

  • Olafsdottir, E. A., Erlingsson, S., & Bessason, B. (2017). Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soil. Canadian Geotechnical Journal., 55, 217–233. https://doi.org/10.1139/cgj-2016-0302

    Article  Google Scholar 

  • Özburan, M. (2009). Kütahya ve çevresinin neotektonik incelemesi. [Doctoral thesis, Kocaeli University]. Council of Higher Education Thesis Center, No. 259430.

  • Özburan, M., & Gürer, Ö. F. (2012). Late Cenozoic polyphase deformation and basin development, Kütahya region, western Turkey. International Geology Review, 54(12), 1401–1418. https://doi.org/10.1080/00206814.2011.644108

    Article  Google Scholar 

  • Özdağ, Ö. C., & Gönenç, T. (2020). Modelling stratigraphic structure of Menemen Plain-Izmir/Turkey by microgravity, passive seismic methods and examining its behavior under earthquake effect. Journal of Applied Geophysics., 182, 104175.

    Article  Google Scholar 

  • Pamuk, E., Özdağ, C. Ö., Tucçel, A., Özyalın, Ş, & Akgün, M. (2017). Local site effects evaluation for Aliağa/İzmir using HVSR (Nakamura technique) and MASW methods. Natural Hazards, 90, 887–899. https://doi.org/10.1007/s11069-017-3077-y

    Article  Google Scholar 

  • Papazachos, C. B., & Kiratzi, A. A. (1996). A detailed of the active crustal deformation in the Aegean and surrounding area. Tectonophysics, 253, 129–153. https://doi.org/10.1016/0040-1951(95)00047-X

    Article  Google Scholar 

  • Park, C. B., Miller, R. D., & Xia, J. (1999). Multi-channel analysis of surface waves (MASW). Geophysics, 64(3), 800–808. https://doi.org/10.1190/1.1444590

    Article  Google Scholar 

  • Park, C.B. & Miller, R.D. (2005). Seismic characterization of wind turbine sites in Kansas by the MASW Method. Kansas Geological Survey Open-file Report, 2005–23.

  • Parolai, S., Bormann, P., & Milkereit, C. (2002). New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the cologne area (Germany). Bulletin of the Seismological Society of America, 92, 2521–2527. https://doi.org/10.1785/0120010248

    Article  Google Scholar 

  • Rezaei, E., & Choobbasti, A. J. (2017). Application of the microtremor measurements to a site effect study. Earthquake Science, 30, 157–164. https://doi.org/10.1007/s11589-017-0187-2

    Article  Google Scholar 

  • SeisImager/SW, (2005). Manual V 1.4 WindowsTM Software for Analysis of Surface Waves (Pickwin V. 3.14; WaveEq V. 2.07), Including Explanation of Geometrics Seismodule Controller Software Surface Wave Data Acquisition Wizards. Retrived January 10, 2021, from https://www.geometrics.com/software/

  • Sesame, 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation SESAME European Research Project P12-Deliverable. D23.12. Retrived February 14, 2023, from https://sesame.geopsy.org/SES_Reports.htm

  • Silahtar, A., Budakoğlu, E., Horasan, G., Yıldırım, E., Küyük, H. S., Yavuz, E., & Çaka, D. (2016). Investigation of site properties in Adapazarı, Turkey, using microtremors and surface waves. Environment and Earth Science, 75, 1354. https://doi.org/10.1007/s12665-016-6151-y

    Article  Google Scholar 

  • Stokoe, K.H.II, Wright, S.G., Bay, J.A., & Roesset. J.M. (1994). Characterization of geotechnical sites by SASW method.Geophysical Characterization of Sites. R.D. Woods Ed. pp. 15–25.

  • Subaşı, O., Haşal, M. E., Özaslan, B., İyisan, R., Yamanaka, H., & Chimoto., K. (2019). Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması. Teknik Dergi, 30(5), 9459–9481.

    Article  Google Scholar 

  • Spadi, M., Tallini, M., Albano, M., Cosantino, D., & Nocentini, M. (2022). New insights on bedrock morphology and local seismic amplification of the Castelnuovo village (L’Aquila Basin, Central Italy). Engineering Geology, 297, 106506.

    Article  Google Scholar 

  • Şaroğlu, F., Emre, Ö., & Kusçu, İ., (1992). Türkiye diri fay haritası. [Map]. Maden Tetkik ve Arama Genel Müdürlügü Jeoloji Etütleri Dairesi.

  • Şengör, A. M. C. (1987). Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: Examples from western Turkey. Geological Society Pub. London, Special Publications, 28, 575–589. https://doi.org/10.1144/GSL.SP.1987.028.01.38

    Article  Google Scholar 

  • Tan, O. (2021). A homogeneous earthquake catalogue for Turkey. Natural Hazards and Earth Systems Sciences, 21(7), 2059–2073. https://doi.org/10.5194/nhess-21-2059-2021

    Article  Google Scholar 

  • Taymaz, T., Jackson, J., & Westaway, R. (1990). Earthquake mechanisms in the Hellenic trench near Crete. Geophysical Journal International, 102, 695–731. https://doi.org/10.1111/j.1365-246X.1990.tb04590.x

    Article  Google Scholar 

  • Taymaz, T., Jackson, J., & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433–490. https://doi.org/10.1111/j.1365-246X.1991.tb03906.x

    Article  Google Scholar 

  • Taymaz, T., Westaway, R., & Reilinger, R. (2004a). Active faulting and crustal deformation in the Eastern Mediterranean region. Special Issue of Tectonophysics., 391(1–4), 375. https://doi.org/10.1016/j.tecto.2004.07.005

    Article  Google Scholar 

  • Taymaz, T., Tan, O., & Yolsal, S. (2004b). Seismotectonics of western Turkey: a synthesis of source parameters and rupture histories of recent earthquakes. EOS Trans. Am. Geophys. Union 85 (47) (Fall Meeting Suppl., p.408, Moscone Convention Center, San Fransisco-California, USA, December 13–17, 2004).

  • Tekebaş, S. (2010). Yalova ili zemin tepki fonksiyonlarının microtremor verileri ile belirlenmesi. [Master thesis, İstanbul University]. Council of Higher Education Thesis Center, No.282734.

  • Toksöz, M. N., & Lacoss, R. T. (1968). Microseisms: Mode structures and sources. Science, 159, 872–873. https://doi.org/10.1126/science.159.3817.872

    Article  Google Scholar 

  • Tuan, T.T. (2009). The ellipticity (H/V-ratio) of Rayleigh surface waves [PhD thesis, Friedrich-Schiller-Universität Jena]. https://d-nb.info/993363504/34

  • Tunçel, A. (2008). Sismik kırılma yöntemi ve mikrotremör ölçümlerinden elde edilen dinamik zemin parametrelerinin karşılaştırılması. [Master thesis, Dokuz Eylül University]. Council of Higher Education Thesis Center.

  • Tunçel, A., Pamukçu, O., Gönenç, T., & Akgün, M. (2016). Mikrotremor, Çok Kanallı Yüzey Dalgaları (ÇKYD) ve Mikrogravite Yöntemleri Kullanılarak Zemin Dinamik Özelliklerinin İrdelenmesi: Karşıyaka-İzmir Örneği. Yerbilimleri, 37(2), 81–92.

    Google Scholar 

  • Tün, M., Pekkan, E., Özel, O., & Güney, Y. (2016). An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophysical Journal International, 207, 589–607. https://doi.org/10.1093/gji/ggw294

    Article  CAS  Google Scholar 

  • Twiss, R.J. & Moores, E.M. (1992). Structural Geology. W.H. Freeman and Company, New York. 532 pp. ISBN 0–7167–2252–6.

  • Wald, L. A., & Mori, J. (2000). Evaluation of methods for estimating linear site-response amplification in the Los Angeles Region. Bulletin of the Seismological Society of America, 90(6B), S32–S42. https://doi.org/10.1785/0119970170

    Article  Google Scholar 

  • Westaway, R. (2003). Kinematics of the Middle East and eastern Mediterrianean updated. Turkey J. Eart. Sci., 12(1), 5–46.

    Google Scholar 

  • Wortel, M. J. R., & Spakman, W. (2000). Subduction and slab detachment in the Mediterranean-Carpathian region. Science, 290(5498), 1910–1917.

    Article  CAS  Google Scholar 

  • Xia, J., Miller, R.D. & Park, C.B. (2000). Construction of 2-D vertical shear-wave velocity field by the multichannel analysis of surface wave technique. Proceeding of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Arlington, Va. pp 1197–1206.

  • Xia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., & Ivanov, J. (2002). Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dynamics and Earthquake Engineering, 22(3), 181–190. https://doi.org/10.1016/S0267-7261(02)00008-8

    Article  Google Scholar 

  • Yılmaz, Y., (2000). Ege Bölesinin Aktif Tektoniği, Batı Anadolu Deprem Sempozyumu (BADSEM) Bildiriler Kitabı, s: 3–14. ISBN: 975–585–148–8, İzmir.

  • Zhao, J. X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P. G., Asano, A., & Ohno, Y. (2006). An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America, 96(3), 914–925. https://doi.org/10.1785/0120050124

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank anonymous reviewers for their comments that helped to improve the quality of this article. This study was partly supported by the Kütahya Dumlupınar University Scientific Research Projects Coordinatorship (Project Number: 2016-04).

Funding

Kütahya Dumlupınar University, 2016-04.

Author information

Authors and Affiliations

Authors

Contributions

The main manuscript text, figures and table have been prepared by the corresponding author.

Corresponding author

Correspondence to Hatice Durmuş.

Ethics declarations

Conflict of Interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmuş, H. Soil Characterization Using HVSR and MASW Techniques: A Case Study (Kütahya Dumlupınar University Campus). Pure Appl. Geophys. (2024). https://doi.org/10.1007/s00024-024-03452-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00024-024-03452-w

Keywords

Navigation