Skip to main content
Log in

Regional Modeling of the Lithospheric Magnetic Field from Local and Satellite Constraints: A Case Study of the Xinjiang Region

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We investigate the total intensity F of the lithospheric field over the Xinjiang region (34–50° N, 73–96.5° E) through a three-dimensional surface spline (3DSS) model with 0.1° × 0.1° resolution, constrained by 296 ground measuring points recorded between 1936.0 and 2000.0, 10,236 aeromagnetic data points during 1970–2011, and 10,236 satellite model predictions of CHAOS-7.5. We compare predictions of the new model against those from the regional spherical harmonic (RSH) model, two-dimensional surface spline and Taylor polynomial models, and global models LCS-1 and NGDC720. We select 13,605, 18,723, and 23,841 points from three altitudes to create 3DSSS (sparse), 3DSSM (middle), 3DSSD (dense) models, allowing for external field contamination and boundary effects. Results show a good agreement between the spatially detailed 3DSS model and aeromagnetic data. The new model reveals lower error after inspecting the residuals and root mean square error (RMSE), the coefficients, and correlation coefficients between 3DSS models. The new model enables useful geological interpretation; four magnetic anomalies of Xinjiang are coincident with geological structures, and anomalies are also consistent with the tectonic facies and especially the geological distribution in eastern Tianshan. The lithospheric magnetic field in the research area reflects the magnetization difference of the basement, and its geological origin is ascribed to multi-stage magmatism. Results imply that the 3DSS model can model the spatial distributions robustly and is not sensitive to the number of modeling points. The induced field dominates the continent and has a magnetization process in the WE direction in Xinjiang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

CHAOS-7.5 of CHAOS7 is available at http://www.spacecenter.dk/files/magnetic-models/CHAOS-7/, LCS-1 is available at http://www.spacecenter.dk/files/magnetic-models/LCS-1/ and NGDC720 is available at https://geomag.us/models/ngdc720.html. All measuring data will be available upon request.

References

  • Alken, P., Thébault, E., Beggan, C., Amit, H., Aubert, J., Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., Chambodut, A., Chulliat, A., Cox, G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D., Holschneider, M., Huder, L., … Zhou, B. (2021). International geomagnetic reference field: The thirteenth generation. Earth, Planets and Space, 73, 49. https://doi.org/10.1186/s40623-020-01288-x

    Article  Google Scholar 

  • An, S. L., Zhou, K. F., Wang, J. L., Yang, H., & Zhang, Z. X. (2018). Integrated analysis of gravity and magnetic fields in the Eastern Tianshan Belt, Xinjiang, Central Asia: Implications for Cu–Au–Fe polymetallic deposits exploration. Journal of Applied Geoyphysics, 159, 319–328. https://doi.org/10.1016/j.jappgeo.2018.09.002

    Article  Google Scholar 

  • An, Z. C., & Xu, Y. F. (1981). Methods of computation of geomagnetic field at greater altitude in a local region. Chinese Journal of Space Science, 1(1), 68–73. in Chinese.

    Article  Google Scholar 

  • Chen, L., Alixiati, Y. S., Liu, D. Q., Li, J., Li, G. R., Li, R., Ding, X. J., & Sun, X. X. (2017). Analysis of mobile gravity and mobile magnetic characteristics before the Xinjiang AKto Ms6.5 Earthquake in 2016. Journal of Seismological Research, 40(3), 392–398.

    Google Scholar 

  • De Santis, A., Torta, J.M., & Falcone, C. (1996). A simple approach to the transformation of spherical harmonic models under coordinate system rotation. Geophysical Journal International, 126(1), 263–270. https://doi.org/10.1111/j.1365-246X.1996.tb05284.x

  • Feng, Y., Jiang, Y., Sun, H., An, Z. C., & Huang, Y. (2018). The three-dimensional surface Spline model of geomagnetic field. Chinese Journal of Geophysics, 61(4), 1352–1365. https://doi.org/10.6038/cjg2018K0217

    Article  Google Scholar 

  • Feng, Y., Nasir, A., Li, Y. J., Zhang, J. Y., Zhang, J. X., & Huang, Y. (2023). The study of the lithospheric magnetic field over Xinjiang and Tibet areas based on ground, airborne, and satellite data. Remote Sensing, 15, 2002. https://doi.org/10.3390/rs15082002

    Article  Google Scholar 

  • Finlay, C. C., Kloss, C., Olsen, N., Hammer, M. D., Toffner-Clausen, L., Grayver, A., & Kuvshinov, A. (2020). The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic anomaly. Earth, Planets and Space, 72, 156. https://doi.org/10.1186/s40623-020-01252-9

    Article  Google Scholar 

  • Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N., & Tøffner-Clausen, L. (2016). Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth, Planets and Space, 68(1), 1–18. https://doi.org/10.1186/s40623-016-0486-1

    Article  Google Scholar 

  • Finlay, C. C., Olsen, N., & Toffner-clausen, L. (2015). DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth, Planets and Space, 67, 114. https://doi.org/10.1186/s40623-015-0274-3

    Article  Google Scholar 

  • Friis-Christensen, E., Lühr, H., & Hulot, G. (2006). Swarm: A constellation to study the Earth’s magnetic field. Earth, Planets and Space, 58(4), 351–358.

    Article  Google Scholar 

  • Gao, G. M., Hou, J., Kang, G. F., Bai, C. H., Wen, L. M., Zhao, H., & Shi, L. (2019). Crustal thickness and lithospheric thermal state beneath the Junggar Basin and adjacent Mountain Ranges, northwest China. Journal of Asian Earth Science. https://doi.org/10.1016/j.jseaes.2019.02.024

    Article  Google Scholar 

  • Gao, G. M., Kang, G. F., Bai, C. H., & Li, G. G. (2013). Distribution of the crustal magnetic anomaly and geological structure in Xinjiang, China. Journal of Asian Earth Sciences, 77, 12–20. https://doi.org/10.1016/j.jseaes.2013.08.014

    Article  Google Scholar 

  • Haines, G. V. (1985). Spherical cap harmonic analysis. Journal of Geophysical Research, 90(B3), 2583–2592.

    Article  Google Scholar 

  • Jiang, Yi., Holme, R., Xiong, S. Q., Jiang, Y., Feng, Y., & Yang, H. (2021). Long-wavelength lithospheric magnetic field of China. Geophysical Journal International, 224, 1780–1792. https://doi.org/10.1093/gji/ggaa490

    Article  Google Scholar 

  • Lei, Y., Jiao, L., & Chen, H. (2018). Possible correlation between the vertical component of lithospheric magnetic field and continental seismicity. Earth, Planets and Space, 70, 179. https://doi.org/10.1186/s40623-018-0949-7

    Article  Google Scholar 

  • Li, J. L., & Wang, Z. Q. (2018). A review on the origin and development of Chinese tectonics by reading the book “Major tectonic units in China.” Acta Petrological Sinica, 34(7), 1863–1866.

    Google Scholar 

  • Li, Y. G., Li, Q., & Zhang, H. (1991). Paleomagnetism and several geologic tectonics in Xinjiang. Xijiang Geology., 9(1), 4–23.

    Google Scholar 

  • Maus, S. (2010). Magnetic field model MF7. Available at https://www.geomag.us/models/MF7.html. Accessed September 2017.

  • Maus, S., Lühr, H., Rother, M., Hemant, K., Balasis, G., Ritter, P., & Stolle, C. (2007). Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2006GC001521

    Article  Google Scholar 

  • Maus, S., Yin, F., Lühr, H., Manoj, C., Rother, M., Rauberg, J., Stolle, C., & Müller, R. D. (2008). Resolution of direction of oceanic magnetic lineation by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2008GC001949

    Article  Google Scholar 

  • Neubert, T., Mandea, M., Hulot, G., Frese, V. R., Primdahl, F., Jørgensen, J. L., Friis-Christensen, E., Stauning, P., Olsen, N., & Risbo, T. (2001). Ørsted satellite captures high-precision geomagnetic field data. Eos, 82(7), 81–88.

    Article  Google Scholar 

  • Olsen, N., Ravat, D., Finlay, C. C., & Kother, L. K. (2017). LCS-1: A high resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations. Geophysical Journal International, 211(3), 1461–1477. https://doi.org/10.1093/gji/ggx381

    Article  Google Scholar 

  • Reigber, C., Lühr, H., & Schwintzer, P. (2002). Champ mission status. Advance Space Research. https://doi.org/10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  • Sabaka, T. J., Olsen, N., & Purucker, M. E. (2004). Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophysical Journal International, 159(2), 521–547. https://doi.org/10.1111/j.1365-246X.2004.02421.x

    Article  Google Scholar 

  • Sabaka, T. J., Olsen, N., Tyler, R. H., & Kuvshinov, A. (2015). CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophysical Journal International, 200(3), 1596–1626. https://doi.org/10.1093/gji/ggu493

    Article  Google Scholar 

  • Sabaka, T. J., Toffner-Clausen, L., Olsen, N., & Finlay, C. C. (2020). CM6: A comprehensive geomagnetic field model derived from both CHAMP and Swarm satellite observations. Earth, Planets and Space, 72, 80. https://doi.org/10.1186/s40623-020-01210-5

    Article  Google Scholar 

  • Thébault, E., Purucker, M., Whaler, K. A., Langlais, B., & Sabaka, T. J. (2010). The magnetic field of the Earth’s lithosphere, 2010. Space Science Reviews, 155, 95–127. https://doi.org/10.1007/s11214-010-9667-6

    Article  Google Scholar 

  • Thébault, E., Schott, J. J., & Mandea, M. (2006). Revised spherical cap harmonic analysis (R-SCHA): Validation and properties. Journal of Geophysical Research, 111, B01102. https://doi.org/10.1029/2005JB003836

    Article  Google Scholar 

  • Wang, J., Shen, X. H., Yang, Y. Y., Zeren, Z. M., Hulot, G., Olsen, N., Zhou, B., Magnes, W., De Santis, A., Huang, J. P., Guo, F., Liu, W. L., & Yu, J. B. (2021). Initial scalar lithospheric magnetic anomaly map of China and surrounding regions derived from CSES satellite data. Science China, Technology Sciences, 64(5), 1118–1126. https://doi.org/10.1007/s11431-020-1727-0

    Article  Google Scholar 

  • Xiao, W. J., Windley, B. F., Allen, M. B., & Han, C. M. (2013). Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, 23, 1316–1341.

    Article  Google Scholar 

  • Xiao, W. J., Zhang, L. C., Qin, K. Z., Sun, S., & Li, J. L. (2004). Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304, 370–395.

    Article  Google Scholar 

  • Xiao, X. C., He, G. Q., Xu, X., Li, J. Y., Hao, J., Cheng, S. D., Deng, Z. Q., & Li, Y. A. (2010). Crustal structure and geological evolution in Xinjiang, China. Geological Press House. in Chinese.

    Google Scholar 

  • Xiong, S. Q., Tong, J., Ding, Y. Y., & Li, Z. K. (2016). Aeromagnetic data and geological structure of continental China: A review. Applied Geophysics, 13(2), 227–237. https://doi.org/10.1007/s11770-016-0552-2

    Article  Google Scholar 

  • Xu, Q. Q., Ji, J. Q., Zhao, L., Gong, J. F., Zhou, J., He, G. Q., Zhong, D. L., Wang, J. D., & Griffiths, L. (2013). Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model. Earth-Science Reviews, 126, 178–205. https://doi.org/10.1016/j.earscirev.2013.08.005

    Article  Google Scholar 

  • Xu, W. Y. (2009). Physics of electromagnetic phenomena of the earth. University of Science and Technology of China Press. in Chinese.

    Google Scholar 

  • Zhang, K. K. (2023). A novel geomagnetic satellite constellation: Science and applications. Earth and Planetary Physics, 7(1), 4–21. https://doi.org/10.26464/epp2023019

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, 41404053), the Macau Foundation and the pre-research project of Civil Aerospace Technologies (Nos. D020308 and D020303), which is funded by China’s National Space Administration, the opening fund of the State Key Laboratory of Lunar and Planetary Sciences (Macau University of Science and Technology, Macau FDCT No. 119/2017/A3), the Specialized Research Fund for State Key Laboratories, and the NUIST-UoR International Research Institute. We also thank the reviewers for their valuable advice.

Funding

National Natural Science Foundation of China, 41974073, Yan Feng, 42250103, Yan Feng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Feng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, J., Xiong, S. et al. Regional Modeling of the Lithospheric Magnetic Field from Local and Satellite Constraints: A Case Study of the Xinjiang Region. Pure Appl. Geophys. 180, 4219–4235 (2023). https://doi.org/10.1007/s00024-023-03385-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03385-w

Keywords

Navigation