Skip to main content
Log in

Source Characteristics of the 18 November 2022 Earthquake (\({M}_{W}\) 6.7), Offshore Southwest Sumatra, Indonesia, Revealed by Tsunami Waveform Analysis: Implications for Tsunami Hazard Assessment

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On 18 November 2022, a strong earthquake occurred in the near trench of Sunda Arc southwest of southern Sumatra, generating a small tsunami recorded at four tide gauge stations (KRUI, BINT, SBLT, and SIKA). Four seismological agencies (BMKG, GCMT, GFZ, and USGS) obtained nearly similar earthquake parameters and focal mechanisms from a seismic approach. The 2022 earthquake occurred near two major historical earthquakes that generated destructive tsunamis. One of the historical tsunamis, the 2010 Mentawai tsunami, was produced by a rare shallow and slow rupture earthquake with a higher tsunami impact than predicted from the seismic moment. It is related to the low material rigidity in the source location. This study aims to understand the source characteristics of the 2022 event, which were probably influenced by the depth-varying rigidity. We examined the four source models using numerical tsunami modeling. We tested five distinct rigidity values, i.e., 10, 12.5, 15, 17.5, and 20 GPa, for each source model to obtain the best match of simulated and observed tsunami waveforms. Waveform correlation coefficient and NRMSE are used as similarity indicators. The Mw 6.7 shallow source model with low rigidity (10 GPa) is the best model, as indicated by the correlation of ~ 0.74 and the lowest NRMSE. This solution is consistent with the long duration of the source time function of this event issued by IPGP. It is necessary to consider the appropriate rigidity characteristic in the tsunami hazard assessment since improper rigidity strongly affects the tsunami impact prediction in the coastal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The earthquake focal mechanisms are provided by BMKG (https://repogempa.bmkg.go.id/eventcatalog), GCMT (https://www.globalcmt.org/), GFZ (https://geofon.gfz-potsdam.de/old/eqinfo/event.php?id=gfz2022wpnl), and USGS (https://earthquake.usgs.gov/earthquakes/eventpage/us7000iqpn/executive). Digital elevation data (DEMNAS and BATNAS) from BIG is available at https://tanahair.indonesia.go.id/demnas/#/. The GEBCO Bathymetric data is freely accessed through https://download.gebco.net/. Sea level datasets are provided by BIG (http://ina-sealevelmonitoring.big.go.id/ipasut/).

References

  • Aki, K. (1966). Generation and propagation of G waves from the Niigata earthquake of June 16, 1964, part 2. Estimation of earthquake moment, released energy, and stress-strain drop from G waves spectrum. Bulletin of the Earthquake Research Institute, 44, 73–88.

    Google Scholar 

  • Ben-Menahem, A., & Rosenman, M. (1972). Amplitude patterns of tsunami waves from submarine earthquakes. Journal of Geophysical Research, 77(17), 3097–3128. https://doi.org/10.1029/JB077i017p03097

    Article  Google Scholar 

  • BIG. (2022). DEMNAS. https://tanahair.indonesia.go.id/demnas/#/. Retrieved 19 Nov 2022

  • Bilek, S. L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400(6743), 443–446.

    Article  Google Scholar 

  • Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of Seismological Society of America, 100(6), 2914–2926. https://doi.org/10.1785/0120100111

    Article  Google Scholar 

  • BMKG. (2022). Focal Mechanism of the 18 November 2022 Southwest of Sumatra, Indonesia Earthquake. BMKG. https://repogempa.bmkg.go.id/. Retrieved 22 Nov 2022.

  • Carvalho, J., Barros, L. V., & Zahradník, J. (2018). Inversion for focal mechanisms using waveform envelopes and inaccurate velocity models: Examples from Brazil. Bulletin of Seismological Society of America, 109(1), 138–151. https://doi.org/10.1785/0120180119

    Article  Google Scholar 

  • Coffin, M. F., Gahagan, L. M., & Lawver, L. A. (1998). Present-day Plate Boundary Digital Data Compilation. University of Texas Institute for Geophysics Technical Report No. 174. http://www-udc.ig.utexas.edu/external/plates/data.htm. Retrieved 29 Sept 2022

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

    Article  Google Scholar 

  • Ekstrӧm, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

    Article  Google Scholar 

  • Felix, R. P., Hubbard, J. A., Bradley, K. E., Lythgoe, K. H., Li, L., & Switzer, A. D. (2022). Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust. Natural Hazards and Earth System Sciences, 22, 1665–1682. https://doi.org/10.5194/nhess-22-1665-2022

    Article  Google Scholar 

  • Gao, D., & Kao, H. (2020). Optimization of the match-filtering method for robust repeating earthquake detection: The multisegment cross-correlation approach. Journal of Geophysical Research Solid Earth, 125(7), e2020JB019714. https://doi.org/10.1029/2020JB019714

    Article  Google Scholar 

  • GEBCO. (2022). GEBCO Gridded Bathymetry Data Download. https://download.gebco.net/. Retrieved 19 Nov 2022

  • GFZ. (2022). The Mw 6.8 Southwest of Sumatra, Indonesia. https://geofon.gfz-potsdam.de/old/eqinfo/event.php?id=gfz2022wpnl. Retrieved 22 Nov 2022

  • Gibbons, S. J., Lorito, S., de la Asunción, M., Volpe, M., Selva, J., Macías, J., Sánchez-Linares, C., Brizuela, B., Vöge, M., Tonini, R., Lanucara, P., Glimsdal, S., Romano, F., Meyer, J. C., & Løvholt, F. (2022). The sensitivity of tsunami impact to earthquake source parameters and manning friction in high-resolution inundation simulations. Frontiers in Earth Science., 9, 757618. https://doi.org/10.3389/feart.2021.757618

    Article  Google Scholar 

  • Gunawan, E., Kongko, W., Kholil, M., Widyantoro, B. T., Widiyantoro, S., Supendi, P., Hanifa, N. R., Anjasmara, I. M., Pratama, C., & Gusman, A. R. (2022). The 2019 Mw 7.0 Banten, Indonesia, intraslab earthquake: investigation of the coseismic slip, tsunami modelling and Coulomb stress change. Geoenvironmental Disasters, 9, 14. https://doi.org/10.1186/s40677-022-00215-4

    Article  Google Scholar 

  • Gusman, A. R., Tanioka, Y., Kobayashi, T., Latief, H., & Pandoe, W. (2010). Slip distribution of the 2007 Bengkulu earthquake inferred from tsunami waveforms and InSAR data. Journal of Geophysical Research, 115, B12316. https://doi.org/10.1029/2010JB007565

    Article  Google Scholar 

  • Hananto, N. D., Leclerc, F., Li, L., Etchebes, M., Carton, H., Topponier, P., Qin, Y., Avianto, P., Singh, S. C., & Wei, S. (2020). Tsunami earthquakes: Vertical pop-up expulsion at the forefront of subduction megathrust. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2020.116197

    Article  Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). Moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350.

    Article  Google Scholar 

  • Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model. U.S. Geological Survey data release. https://doi.org/10.5066/F7PV6JNV. Retrieved 29 Sept 2022

  • Heidarzadeh, M., Ishibe, T., Harada, T., Natawidjaja, D. H., Pranantyo, I. R., & Widyantoro, B. T. (2021). High potential for Splay faulting in the Molucca Sea, Indonesia: November 2019 Mw 7.2 Earthquake and Tsunami. Seismological Research Letters, 92(5), 2915–2926. https://doi.org/10.1785/0220200442

    Article  Google Scholar 

  • Heidarzadeh, M., & Satake, K. (2013). Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and DART stations across the Pacific Ocean. Pure and Applied Geophysics, 170, 1275–1293. https://doi.org/10.1007/s00024-012-0558-5

    Article  Google Scholar 

  • Horspool, N., Pranantyo, I. R., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., Cipta, A., Bustamam, B., Anugrah, S. D., & Thio, H. K. (2013). A National Tsunami Hazard Assessment for Indonesia. Australia-Indonesia Facility for Disaster Reduction (AIFDR)

  • Institut de physique du globe de Paris (IPGP) & Ecole et Observatoire des Sciences de la Terre de Strasbourg (EOST). (1982). GEOSCOPE, French global network of broad band seismic stations. Institut de physique du globe de Paris (IPGP), Université de Paris. https://doi.org/10.18715/GEOSCOPE.G

  • Jiménez, C., Zamudio, Y., & Olcese, D. (2022). Numerical modelling of the 1970 intraslab Peru earthquake and tsunami (Mw 7.9). Journal of Seismology. https://doi.org/10.1007/s10950-022-10119-3

    Article  Google Scholar 

  • Lange, D., Tilmann, F., Henstock, T., Rietbrock, A., Natawidjaja, D. H., & Kopp, H. (2018). Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network. Solid Earth, 9, 1035–1049. https://doi.org/10.5194/se-9-1035-2018

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., & Rushing, T. M. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research, 117, B04311. https://doi.org/10.1029/2011JB009133

    Article  Google Scholar 

  • Liu, P. L.-F., Woo, S.-B., & Cho, Y.-S. (1998). Computer programs for tsunami propagation and inundation, Technical Report, Cornell University, Ithaca, New York

  • Natawidjaja, D. H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B. W., Cheng, H., Edwards, R. L., Avouac, J.-P., & Ward, S. N. (2006). Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. Journal of Geophysical Research, 111, B06403. https://doi.org/10.1029/2005JB004025

    Article  Google Scholar 

  • Negara, P. K. G. A. (2016). Korelasi respon instrumen pada seismometer co-located dan penerapannya pada seismometer non co-located untuk menganalisis faktor yang mempengaruhi seismogram. Unpublished undergraduate thesis. Sekolah Tinggi Meteorologi Klimatologi dan Geofisika (STMKG). (in Indonesian)

  • Neto, G. S. L., & Julia, J. (2023). Determination of interplate focal mechanisms with the Brazilian Seismic Network: A simplified Cut-and-Paste approach. Journal of South American Earth Sciences, 121, 104149. https://doi.org/10.1016/j.jsames.2022.104149

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of Seismological Society of America, 75(4), 1135–1154. https://doi.org/10.1785/BSSA0750041135

    Article  Google Scholar 

  • Pribadi, S., Afnimar, A., Puspito, N. T., & Ibrahim, G. (2013). Characteristics of earthquake-generated tsunamis in Indonesia based on source parameter analysis. Journal of Mathematical and Fundamental Sciences, 45(2), 189–207. https://doi.org/10.5614/j.math.fund.sci.2013.45.2.8

    Article  Google Scholar 

  • Rabinovich, A. B. (1997). Spectral analysis of tsunami waves: Separation of source and topography effects. Journal of Geophysical Research, 102(C6), 12663–12676. https://doi.org/10.1029/97JC00479

    Article  Google Scholar 

  • Rakoto, V., Lognonné, P., Rolland, L., & Coїsson, P. (2018). Tsunami wave height estimation from GPS-derived ionospheric data. Journal of Geophysical Research: Space Physics, 123(5), 4329–4348. https://doi.org/10.1002/2017JA024654

    Article  Google Scholar 

  • Ratnasari, R. N., Tanioka, Y., & Gusman, A. R. (2020). Determination of source models appropriate for tsunami forecasting: Application to tsunami earthquakes in Central Sumatra, Indonesia. Pure and Applied Geophysics, 177, 2551–2562. https://doi.org/10.1007/s00024-020-02483-3

    Article  Google Scholar 

  • Romano, F., Gusman, A. R., Power, W., Piatanesi, A., Volpe, M., Scala, A., & Lorito, S. (2021). Tsunami source of the 2021 Mw 8.1 Raoul Island earthquake from DART and tide-gauge data inversion. Geophysical Research Letters, 48, e2021GL094449. https://doi.org/10.1029/2021GL094449

    Article  Google Scholar 

  • Romano, F., Piatanesi, A., Lorito, S., Tolomei, C., Atzori, S., & Murphy, S. (2016). Optimal time alignment of tide-gauge tsunami waveforms in nonlinear inversion: Application to the 2015 Illapel (Chile) earthquake. Geophysical Research Letters. https://doi.org/10.1002/2016GL071310

    Article  Google Scholar 

  • Sahakian, V. J., Melgar, D., & Muzli, M. (2019). Weak near-field behaviour of a tsunami earthquake: Toward real-time identification for local warning. Geophysical Research Letters, 46, 9519–9528. https://doi.org/10.1029/2019GL083989

    Article  Google Scholar 

  • Satake, K., Nishimura, Y., Putra, P. S., Gusman, A. R., Sunendar, H., Fujii, Y., Tanioka, Y., Latief, H., & Yulianto, E. (2013). Tsunami source of the 2010 Mentawai, Indonesia earthquake inferred from tsunami field survey and waveform modeling. Pure and Applied Geophysics, 170, 1567–1582. https://doi.org/10.1007/s00024-012-0536-y

    Article  Google Scholar 

  • Supendi, P., Widiyantoro, S., Rawlinson, N., Yatimantoro, T., Muhari, A., Hanifa, N. R., Gunawan, E., Shiddiqi, H. A., Imran, I., Anugrah, S. D., Daryono, D., Prayitno, B. S., Adi, S. P., Karnawati, D., Faizal, L., & Damanik, R. (2022). On the potential for megathrust earthquakes and tsunamis off the southern coast of West Java and southeast Sumatra, Indonesia. Natural Hazards. https://doi.org/10.1007/s11069-022-05696-y

    Article  Google Scholar 

  • Tanioka, Y., Miranda, G. J. A., Gusman, A. R., & Fujii, Y. (2017). Method to determine appropriate source models of large earthquake including tsunami earthquakes for tsunami early warning in Central America. Pure and Applied Geophysics, 174, 3237–3248. https://doi.org/10.1007/s00024-017-1630-y

    Article  Google Scholar 

  • Triyono, R., Prasetya, T., Daryono, D., Anugrah, S. D., Sudrajat, A., Setiyono, U., Gunawan, I., Priyobudi, P., Yatimantoro, T., Hidayanti, H., Anggraini, S., Rahayu, R. H., Yogaswara, D. S., Hawati, P., Apriani, M., Julius, A. M., Harvan, M., Simangunsong, G., & Kriswinarso, T. (2019). Katalog Tsunami Indonesia Tahun 416–2018. BMKG. https://cdn.bmkg.go.id/Web/Katalog-Tsunami-Indonesia-pertahun-416-2018.pdf. Retrieved 03 Feb 2023. (in Indonesian)

  • Triyoso, W., Sahara, D. P., Sarsito, D. A., Natawidjaja, D. H., & Sukmono, S. (2022). Correlation dimension in Sumatra island based on active fault, earthquake data, and estimated horizontal crustal strain to evaluate Seismic Hazard Function (SHF). Geohazards, 3, 227–241. https://doi.org/10.3390/geohazards3020012

    Article  Google Scholar 

  • Ulrich, T., & Gabriel, A.-A. (2022). Stress, rigidity and sediment strenght control megathrust earthquake and tsunami dynamics. Nature Geoscience, 15, 67–73. https://doi.org/10.1038/s41561-021-00863-5

    Article  Google Scholar 

  • USGS. (2022). M 6.9 - 204 km SW of Bengkulu, Indonesia. https://earthquake.usgs.gov/earthquakes/eventpage/us7000iqpn/executive. Retrieved 22 Nov 2022

  • USGS. (2023). Earthquake Catalog. https://earthquake.usgs.gov/earthquakes/search/. Retrieved 25 Jan 2023

  • Vallée, M. (2013). Source time function properties indicate a strain drop independent of earthquake depth and magnitude. Nature Communications, 4, 2606. https://doi.org/10.1038/ncomms3606

    Article  Google Scholar 

  • Wang, X., & Liu, P.L.-F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanism and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147–154. https://doi.org/10.1080/00221686.2006.9521671

    Article  Google Scholar 

  • Wang, Y., Heidarzadeh, M., Satake, K., & Hu, G. (2022). Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021. Natural Hazards and Earth System Sciences, 22, 1073–1082. https://doi.org/10.5194/nhess-22-1073-2022

    Article  Google Scholar 

  • Zachariasen, J., Sieh, K., Taylor, F. W., Edwards, R. L., & Hantoro, W. S. (1999). Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls. Journal of Geophysical Research, 104(B1), 895–919. https://doi.org/10.1029/1998JB900050

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Andrzej Kijko and Gerassimos A. Papadopoulos for their valuable comments and suggestions to improve the manuscript. We thank the Geospatial Information Agency (Badan Informasi Geospasial or BIG) for permission to use sea level data from the tide gauges and for providing open access to digital elevation data (DEMNAS and BATNAS) through https://tanahair.indonesia.go.id/demnas/#/. The GEBCO is also acknowledged for supplying free access to global bathymetry data via https://download.gebco.net/. We use the QGIS and python packages to produce figures.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SPDS, AA, AN, IG, and IF: conceptualised the study and contributed to the writing of the initial manuscript. SPDS performed the numerical modeling and prepared the figures. SPDS and BTS processed the digital elevation model datasets. The tsunami waveforms were provided by AAP. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sesar Prabu Dwi Sriyanto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 940 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriyanto, S.P.D., Arimuko, A., Nurokhim, A. et al. Source Characteristics of the 18 November 2022 Earthquake (\({M}_{W}\) 6.7), Offshore Southwest Sumatra, Indonesia, Revealed by Tsunami Waveform Analysis: Implications for Tsunami Hazard Assessment. Pure Appl. Geophys. 180, 3655–3670 (2023). https://doi.org/10.1007/s00024-023-03371-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03371-2

Keywords

Navigation