Skip to main content
Log in

Relationship Between the High-Amplitude Magnetic Anomalies and Serpentinized Fore-Arc Mantle in the Cascadia Subduction Zone

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A zone of significant high-amplitude magnetic anomalies is observed without a comparable gravity high along the Cascadia margin and is spatially correlated with the low-velocity fore-arc mantle wedge. This wedge is interpreted to be serpentinized fore-arc mantle and is further considered to be the main source of the high-amplitude magnetic anomalies. To test this hypothesis, the magnetization-density ratio (MDR) is estimated along the Cascadia margin to highlight the physical characteristics of serpentinization (reduced density and increased magnetization). Interestingly, high MDR values are found only in central Oregon, where slab dehydration and fore-arc mantle serpentinization (50–60% serpentinization) are inferred in conjunction with sparse seismicity. This result may indicate either poorly serpentinized fore-arc mantle (low degree of serpentinization) or that the fore-arc mantle is deeper than the Curie temperature isotherm for magnetite in northern and southern Cascadia. This finding means that magnetic anomaly highs and serpentinized fore-arc mantle may not always be correlated in subduction zones. On the other hand, the MDR pattern suggests segmentation of the Cascadia subduction zone, which is consistent with several previous geological and geophysical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets implemented in this study are available from the corresponding author upon reasonable request.

References

  • Abers, G. A., Mackenzie, L. S., Rondenay, S., Zhang, Z., Wech, A. G., & Creager, K. C. (2009). Imaging the source of Cascadia tremor and intermediate-depth earthquakes. Geology, 37, 1119–1122. https://doi.org/10.1130/G30143A.1

    Article  Google Scholar 

  • Amante, C., & Eakins, B.W. (2009). ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M.

  • Audet, P., Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2009). Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457, 76–78. https://doi.org/10.1138/nature07650

    Article  Google Scholar 

  • Bilek, S. L. (2009). Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity. Tectonophysics, 495, 2–14. https://doi.org/10.1016/j.texto.2009.02.037

    Article  Google Scholar 

  • Blakely, R. J., Brocher, T. M., & Wells, R. E. (2005). Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology, 33, 445–448. https://doi.org/10.1130/G21447.1

    Article  Google Scholar 

  • Bonvalot, S., Balmino, G., Briais, A., Kuhn, M., Peyrefitte, A., Vales, N., Biancale, R., Gabalda, G., Reinquin, F., & Sarrailh, M. (2012). World Gravity Map. Commission for the Geological Map of the World. Eds. BGI-CGMW-CNES-IRD, Paris.

  • Bostock, M. G., Hyndman, R. D., Rondenay, S., & Peacock, S. M. (2002). An inverted continental Moho and serpentinization of the forearc mantle. Nature, 147, 536–538. https://doi.org/10.1038/417536a

    Article  Google Scholar 

  • Brocher, T. M., Fuis, G. S., Fisher, M. A., Plafker, G., Moses, M. J., & Taber, J. J. (1994). Mapping the magathrust beneath the northern Gulf of Alaska using wide-angle seismic reflection/refraction profiles. Journal of Geophysical Research, 99, 11663–11685.

    Article  Google Scholar 

  • Brocher, T. M., Parsons, T., Tréhu, A. M., Snelson, C. M., & Fisher, M. A. (2003). Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology, 31, 267–270. https://doi.org/10.1130/0091-7613(2003)031%3c0267:SEFWSF%3e2.0.CO;2

    Article  Google Scholar 

  • Chandler, V. W., & Malek, K. C. (1991). Moving-window Poisson analysis of gravity and magnetic data from the Penokean orogen, east-central Minnesota. Geophysics, 56, 123–132. https://doi.org/10.1190/1.1442948

    Article  Google Scholar 

  • Chen, C., Zhao, D., & Wu, S. (2015). Tomographic imaging of the Cascadia subduction zone: Constraints on the Juan de Fuca slab. Tectonophysics, 647–648, 7388. https://doi.org/10.1016/j.tecto.2015.02.012

    Article  Google Scholar 

  • Chou, H.-C., Kuo, B.-Y., Chiao, L.-Y., Zhao, D., & Hung, S.-H. (2009). Tomography of the westernmost Ryukyu subduction zone and the serpentinization of the fore-arc mantle. Journal of Geophysical Research, 114, B12301. https://doi.org/10.1029/2008JB006192

    Article  Google Scholar 

  • Cordell, L., & Taylor, P. T. (1971). Investigation of magnetization and density of a North Atlantic seamount using Poisson’s theorem. Geophysics, 36(5), 919–937. https://doi.org/10.1190/1.1440224

    Article  Google Scholar 

  • Christensen, N. (1966). Elasticity of ultrabasic rocks. Journal of Geophysical Research, 71, 5921–5931. https://doi.org/10.1029/JZ071i024p05921

    Article  Google Scholar 

  • Christensen, N. (2004). Serpentinites, peridotites, and seismology. International Geology Review, 46, 759–816. https://doi.org/10.2747/0020-6814.46.9.795

    Article  Google Scholar 

  • Delorey, A. A., & Vidale, J. E. (2011). Basin shear-wave velocities beneath Seattle, Washington, from noise-correlation Rayleigh waves. Bulletin of the Seismological Society of America, 101, 2162–2175. https://doi.org/10.1785/0120100260

    Article  Google Scholar 

  • Delph, J. R., Levander, A., & Niu, F. (2018). Fluid controls on the heterogenous seismic characteristic of the Cascadia margin. Geophysical Research Letters, 45, 11021–11029. https://doi.org/10.1029/2018GL079518

    Article  Google Scholar 

  • Doo, W.-B., Hsu, S.-K., Tsai, C.-H., & Huang, Y.-S. (2009). Using analytic signal to determine magnetization/density ratios of geological structures. Geophysical Journal International, 179, 112–124. https://doi.org/10.1111/j.1365-246X.2009.04297.x

    Article  Google Scholar 

  • Doo, W.-B., Lo, C.-L., Kuo-Chen, H., Huang, Y.-S., Wu, W.-N., Hsu, S.-K., & Wang, H.-F. (2020). Variations in mantle lithosphere buoyancy reveal seismogenic behavior in the Sunda-Andaman subduction zone. Geophysical Journal International, 220, 1275–1283. https://doi.org/10.1093/gji/ggz502

    Article  Google Scholar 

  • Finn, C. (1991). U.S. West Coast revisited: An aeromagnetic perspective. Comment. Geology, 19, 950–951. https://doi.org/10.1130/0091-7613(1991)019%3c0950:CAROUS%3e2.3.CO;2

    Article  Google Scholar 

  • Fujie, G., Kodaira, S., Kaiho, Y., Yamamoto, Y., Takahashi, T., Miura, S., & Yamada, T. (2018). Controlling factor of incoming plate htdration at the north-western Pacific margin. Nature Communications, 9(1), 3844. https://doi.org/10.1038/s41467-018-06320-z

    Article  Google Scholar 

  • Gao, H. (2018). Three-dimensional variations of the slab geometry correlate with earthquake distributions at the Cascadia subduction zone. Nature Communications, 9, 1204. https://doi.org/10.1038/s41467-018-03655-5

    Article  Google Scholar 

  • Garland, G. D. (1951). Combined analysis of gravity and magnetic anomalies. Geophysics, 16, 51–62.

    Article  Google Scholar 

  • Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E., Gutiérrez-Pastor, J., Eriksson, A.T., Gràcia, E., Dunhill, G., Enkin, R.J., Dallimore, A., & Vallier, T. (2012). Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. U.S. Geological Survey Professional Paper, 1661–F, 170 p.

  • Hildebrand, T.G. (1985). Magnetic terranes in the central United States determined from the interpretation of digital data. In W. J. Hinze, ed., The utility of gravity and anomaly maps, SEG, 248–266.

  • Horen, H., Zamore, M., & Dubuisson, G. (1996). Seismic waves velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge. Geophysical Research Letters, 23, 9–12. https://doi.org/10.1029/95GL03594

    Article  Google Scholar 

  • Hsu, S.-K., Sibuet, J.-C., & Shyu, C.-T. (1996). High-resolution detection of geologic boundaries from potential-field anomalies: An enhanced analytic signal technique. Geophysics, 61, 373–386. https://doi.org/10.1190/1.1443966

    Article  Google Scholar 

  • Hyndman, R. D., & Peacock, S. M. (2003). Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212, 417–432. https://doi.org/10.1016/S0012-821X(03)00263-2

    Article  Google Scholar 

  • Ji, Y., Yoshioka, S., & Banay, Y. A. (2017). Thermal state, slab metamorphism, and interface seismicity in the Cascadia subduction zone based on 3-D modeling. Geophysical Research Letters, 44, 9242–9252. https://doi.org/10.1002/2017GL074826

    Article  Google Scholar 

  • Kirby, S., Engdahl, E.R., & Denlinger, R. (1996). Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, in Bebout, G.E., et al., eds., Subduction: Top to bottom. AGU Geophysical Monograph, 96, 195–214

  • McCrory, P. A., Blair, J. L., Waldhauser, F., & Oppenheimer, D. H. (2012). Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity. Journal of Geophysical Research, 117, B09306. https://doi.org/10.1029/2012JB009407

    Article  Google Scholar 

  • McCrory, P. A., Hyndman, R. D., & Blair, J. L. (2014). Relationship between the Cascadia fore-arc mantle wedge, nonvolcanic tremor, and the downdip limit of seismogenic rupture. Geochemistry, Geophysics, Geosystems, 15, 1071–1095. https://doi.org/10.1002/2013GC005144

    Article  Google Scholar 

  • Matos, C. A., & Mendonca, C. A. (2020). Poisson magnetization-to-density-ratio and magnetization inclination properties of banded iron formations of the Carajás mineral province from processing airborne gravity and magnetic data. Geophysics, 85(5), K1–K11. https://doi.org/10.1190/geo2019-0421.1

    Article  Google Scholar 

  • Mendonca, C. A. (2004). Automatic determination of the magnetization-density ratio and magnetization inclination from the joint interpretation of 2D gravity and magnetic anomalies. Geophysics, 69, 938–948. https://doi.org/10.1190/1.1778237

    Article  Google Scholar 

  • Meyer, B., Saltus, R., & Chulliat, A. (2017). EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3. NOAA National Centers for Environmental Information.

  • Miller, K. C., Keller, G. R., Gridley, J. M., Luetgert, J. H., Mooney, W. D., & Thybo, H. (1997). Crustal structure along the west flank of the Cascades, western Washington. Journal of Geophysical Research, 102, 17857–17873.

    Article  Google Scholar 

  • Nicholson, T., Bostock, M. G., & Cassidy, J. F. (2005). New constraints on subduction zone structure in northern Cascadia. Geophysical Journal International, 161, 849–859. https://doi.org/10.1111/j.1365-246X.2005.02605.x

    Article  Google Scholar 

  • Oleskevich, D. A., Hyndman, R. D., & Wang, K. (1999). The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. Journal of Geophysical Research, 104, 14965–14991.

    Article  Google Scholar 

  • Peacock, S.M., Wang, K., & McMahon, A.M. (2002) Thermal structure and metamorphism of subducting oceanic crust: Insight into Cascadia intraslab earthquakes, in Kirby, S., et al., eds., The Cascadia subduction zone and related subduction systems-Seismic structure, intraslab earthquakes and process, and earthquake hazards. U.S. Geological Survey Open-File Report, 02-328, 17–24.

  • Poisson, S.D. (1826). Mémoire sur la théorie du magnétisme: Mémoires de I’Académie Royale des Sciences de I’Institut de Rrance, pp. 247–348.

  • Porritt, R. W., Allen, R. M., Boyarko, D. C., & Brudzinski, M. R. (2011). Investigation of Cascadia segmentation with ambient noise tomography. Earth and Planetary Science Letters, 309, 67–76. https://doi.org/10.1016/j.epsl.2011.06.026

    Article  Google Scholar 

  • Preston, L. A., Creager, K. C., Crosson, R. S., Brocher, T. M., & Trehu, A. M. (2003). Intraslab earthquakes: Dehydration of the Cascadia slab. Science, 302, 1197–1200. https://doi.org/10.1126/science.1090751

    Article  Google Scholar 

  • Ranero, C. R., Phipps Morgan, J., McIntosh, K., & Relchert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367–373. https://doi.org/10.1038/nature01961

    Article  Google Scholar 

  • Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3D analytic signal. Geophysics, 57, 116–125.

    Article  Google Scholar 

  • Saad, A. F. (1969). Magnetic properties of ultramafic rocks from Red Mountain, California. Geophysics, 34, 974–987.

    Article  Google Scholar 

  • Shillington, D. J., Bécel, A., Nedimovic, M. R., Kuehn, H., Webb, S. C., Abers, G. A., Keranen, K. M., Li, J., Delescluse, M., & Mattei-Salicrup, G. A. (2015). Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nat. Geosi., 8, 961–964. https://doi.org/10.1038/ngeo2586

    Article  Google Scholar 

  • Satake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. (1996). Time and size of a great earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379, 246–249. https://doi.org/10.1038/379246a0

    Article  Google Scholar 

  • Van Wagoner, T.M., Crosson, R.S., Creager, K.C., Medema, G., Preston, L., Symons, N.P., & Brocher, T.M. (2002). Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography. Journal of Geophysical Research. https://doi.org/10.1029/2001JB000710.

  • Wagner, L. S., Beck, S., & Zandt, G. (2005). Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). Journal of Geophysical Research, 110, B01308. https://doi.org/10.1029/2004JB003238

    Article  Google Scholar 

  • Wang, K., & Tréhu, A. M. (2016). Some outstanding issues in the study of great megathrust earthquakes-the Cascadia example. Journal of Geodynamics, 98, 1–18. https://doi.org/10.1016/j.jog.2016.03.010

    Article  Google Scholar 

  • Wells, R. E., Weaver, C. S., & Blakely, R. J. (1998). Fore-arc migration in Cascadia and its neotectonic significance. Geology, 26, 759–762. https://doi.org/10.1130/0091-7613(1998)026%3c0759:FAMICA%3e2.3.CO;2

    Article  Google Scholar 

  • Wilson, D. S. (1993). Confidence intervals for motion and deformation of the Juan de Fuca plate. Journal of Geophysical Research, 98, 16053–16071. https://doi.org/10.1029/93JB01227

    Article  Google Scholar 

  • Wells, R. E., Blakely, R. J., Wech, A. G., McCrory, P. A., & Michael, A. (2017). Cascadia subduction tremor muted by crustal faults. Geology, 45, 515–518. https://doi.org/10.1130/G38835.1

    Article  Google Scholar 

  • Xia, S., Zhao, D., & Qiu, X. (2008). Tomography evidence for the subducting oceanic crust and forearc mantle serpentinization under Kyushu, Japan. Tectonophysics, 449, 85–96. https://doi.org/10.1016/j.tecto.2007.12.007

    Article  Google Scholar 

  • Xia, S., Sun, J., & Huang, H. (2014). Degree of serpentinization in the forearc mantle wedge of Kyushu subduction zone: Quantitative evaluations from seismic velocity. Marine Geophysical Researches, 36, 101–112. https://doi.org/10.1007/s11001-014-9239-3

    Article  Google Scholar 

  • Zhao, D., Wang, K., Rogers, G. C., & Peacock, S. M. (2001). Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone. Earth, Planets and Space, 53, 285–293. https://doi.org/10.1186/BF03352385

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the Editor-in-Chief Prof. Carla F. Braitenberg and two anonymous reviewers for their constructive and supportive suggestions and comments. I also thank Benjamin Fong Chao for helpful discussions and comments. This work was supported by Ministry of Science and Technology of Taiwan (grant no.: MOST 110-2116-M-008-014). Most of the figures are generated using the GMT software.

Funding

Funding was provided by Ministry of Science and Technology of Taiwan (MOST 110-2116-M-008-014).

Author information

Authors and Affiliations

Authors

Contributions

W.-B. Doo wrote the main manuscript and prepared all figures.

Corresponding author

Correspondence to Wen-Bin Doo.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doo, WB. Relationship Between the High-Amplitude Magnetic Anomalies and Serpentinized Fore-Arc Mantle in the Cascadia Subduction Zone. Pure Appl. Geophys. 180, 3545–3558 (2023). https://doi.org/10.1007/s00024-023-03337-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03337-4

Keywords

Navigation