Skip to main content
Log in

Rock Physics Modelling for Estimation of Gas Hydrate Saturation Using NGHP-02 Well Data in the Krishna–Godavari Basin

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The gas hydrate found in the eastern continental margin of India is a boon for this energy-deficient developing country. We used four wells of the National Gas Hydrate Program (NGHP) Expedition 02 from area B of the Krishna–Godavari (KG) basin to estimate gas hydrate saturation. The gas solid hydrate increases the resistivity and sonic velocity of sediment due to its presence. We first used Archie’s method to estimate the saturation using deep resistivity log data, assuming that the sedimentary formation is saturated with brine water and gas hydrate only. Then we chose the modified Hashin–Shtrikman upper bound model from the rock physics analysis to estimate saturation from sonic log data using Gassmann’s equation. The study of gas hydrate morphology suggests that the gas hydrates are pore-filling and grain-supporting in nature compared with the various rock physics models. Theoretical models were prepared for gas hydrate occurrence in coarser sediments with 25% shale and 75% quartz sediments with the critical porosity being 38%. The porosity above the critical porosity suggests that sediment-saturating fluids control the elastic properties of the formation. We also developed a rock physics template (RPT) for various porosity and gas hydrate saturation scenarios by assuming gas hydrates as a component of the rock matrix and the pore spaces of the sediments saturated by 100% water. The RPT was used to estimate saturations in the four wells. The estimated gas hydrate saturations obtained using the Archie method, rock physics model, and RPT method were compared for all wells, obtaining good agreement with the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Onepetro, Trans, 146(01), 54–62.

    Google Scholar 

  • Avseth, P., Mukerji, T., & Mavko, G. (2005). Quantitative seismic interpretation: Applying rock physics to reduce interpretation risk (p. 359). Cambridge University Press.

    Book  Google Scholar 

  • Bastia, R., & Nayak, P. K. (2006). Tectonostratigraphy and depositional patterns in Krishna Godavari offshore Basin, Bay of Bengal. The Leading Edge, 25, 818–829.

    Article  Google Scholar 

  • Biot, M. A. (1956). Theory of propagation of elastic waves in fluid- saturated porous solids. I. Low frequency range. The Journal of Acoustical Society of America 28(2), 168–178.

  • Boswell, R., & Collett, T. S. (2011). Current perspectives on gas hydrate resources. Energy Environmental Science, 4, 1206–1215.

    Article  Google Scholar 

  • Collett, T. S., Boswell, R., Wait, W. F., Kumar, P., Roy, S. K., Chopara, K., Singh, S. K., Yamada, Y., Tenma, N., Pohlman, J., Zyrianova, M., NGHP expedition 02 Scientific party. (2019). Indian National Gas Hydrate Program Expedition 02 Summary of Scientific Results: Gas Hydrate systems along the eastern continental margin of India. Journal of Marine and Petroleum Geology, 108, 39–142.

    Article  Google Scholar 

  • Collett, T. S., Johnson, A. H., Knapp, C. C., & Boswell, R. (2009). Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. AAPG Memoir, 89, 146–219.

    Google Scholar 

  • Collett, T.S., Riedel, M., Cochran, J., Boswell, R., Presley, J., Kumar, P., Sathe, A. V., Sethi, A.K., Lall, M., Sibal, V. K., NGHP Expedition 01 Scientists. (2008). NGHP Expedition 01 (2006). Initial Reports, Directorate General of Hydrocarbons, Noida and Ministry of Petroleum & Natural Gas, India, 4.

  • Curray, J. R., Emmel, F. J., Moore, D. G., & Raitt, R. W. (1982). Structure, tectonics and geological history of the Northeastern Indian Ocean. In A. E. M. Nairn & F. G. Stehli (Eds.), The ocean basins and margins (Vol. 6, pp. 399–450). Plenum Press.

    Chapter  Google Scholar 

  • Du Frane, W. L., Stern, L. A., Weitemeyer, K. A., Constable, S., Pinkston, J. C., & Roberts, J. J. (2015). Electrical properties of polycrystalline methane hydrate. Geophysical Research Letters, 120, 4773–4783.

    Google Scholar 

  • Dvorkin, J., & Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea datasets. Geophysics, 61, 1363–1370.

    Article  Google Scholar 

  • Dvorkin, J., Prasad, M., & Sakai, A. (1999). Elasticity of marine sediments: Rock physics modeling. Geophysical. Research Letter., 26, 1781–1784.

    Article  Google Scholar 

  • Ecker, C., Dvorkin, J., & Nur, A. (1998). Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics, 63(5), 1659–1669.

    Article  Google Scholar 

  • Gabitto, J. F., & Tsouris, C. (2010). Physical properties of gas hydrates, a review. Journal of Thermodynamics. https://doi.org/10.1155/2010/271291

    Article  Google Scholar 

  • Gassmann, F. (1951). Elasticity of Porous Media: Uber Die Elastizitat Poroser Medien. Vierteljahrsschrift Der Naturforschenden Gesselschaft, 96, 1–23.

    Google Scholar 

  • Gudmundsson, J.S. (1990). Method and equipment for production of gas hydrates, Norwegian Patent, 172080, 135.

  • Guo, G. J., Li, M., Zhang, Y. G., & Wu, C. H. (2009). Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms. Physical Chemistry Chemical Physics, 11, 10427–10437.

    Article  Google Scholar 

  • Gupta, S. K. (2006). Basin architecture and petroleum system of Krishna Godavari Basin, east coast of India. Leading Edge, 25(7), 830–837.

    Article  Google Scholar 

  • Handa, Y. P. (1986). Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. The Journal of Chemical Thermodynamics, 18, 891–902.

    Article  Google Scholar 

  • Hashin, Z., & Shtrikman, S. (1963). A variational approach to the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127–140.

    Article  Google Scholar 

  • Heesemann, M., Villinger, H., Fisher, A. T., Tréhu, A. M., & White, S. (2006). Data report: testing and deployment of the new APCT-3 tool to determine in situ temperatures while piston coring, in: Riedel, M., Collett, T. S., & Malone, M. J., Expedition 311 Scientists (Eds.), Proc. IODP, 311. Washington, DC (Integrated Ocean Drilling Program Management International, Inc.), https://doi.org/10.2204/iodp.proc.311.108.2006.

  • Helgerud, M. B., Dvorkin, J., Nur, A., Sakai, A., & Collett, T. (1999). Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophysical Research Letters, 26, 2021–2024.

    Article  Google Scholar 

  • Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society., 65(5), 349–354.

    Article  Google Scholar 

  • Jakobsen, M., Hudson, J. A., Minshull, T. A., & Singh, S. C. (2000). Elastic properties of hydrate-bearing sediments using effective medium theory. Journal of Geophysical Research, 105, 561–577.

    Article  Google Scholar 

  • Joshi, A. K., Sain, K., & Pandey, L. (2019). Gas hydrate saturation and reservoir characterization at sites NGHP-02-17 and NGHP-02-19, Krishna Godavari Basin, eastern margin of India. Journal Marine and Petroleum Geology., 108, 595–608.

    Article  Google Scholar 

  • Kumar, P., Collett, T. S., Shukla, K. M., Yadav, U., Lall, M. V., Vishwnath, K., NGHP-02 expedition scientific party. (2019). Indian National Gas Hydrate Program Expedition-02: Operation and technical summary. Journal of Marine and Petroleum Geology, 108, 3–38.

    Article  Google Scholar 

  • Kumar, P., Collett, T. S., Yadav, U., Boswell, R., Cochran, J., Lall, M., Mazumdar, A., Ramana, M., Ramprasad, T., Riedel, M., Sain, K., Sathe, A., & Vishwanath, K. (2014). Geologic implications of gas hydrates in the offshore of India: Krishna-Godovari Basin, Mahanadi Basin, Andaman Sea, and Kerala-Konkan Basin. Journal of Marine and Petroleum Geology, 58, 29–98.

    Article  Google Scholar 

  • Kumar, P., Yamada, Y., Furutani, A., Vishwanath, K., Collett, T., NGHP-02 Operation and Science Party. (2016). Indian National Gas Hydrate Program: R&D Expedition 02 Comprehensive Post Expedition Report (Unpublished), Directorate General of Hydrocarbons. Noida and Ministry of Petroleum & Natural Gas.

    Google Scholar 

  • Kvenvolden, K. A. (1988). Methane hydrates and global climates. Global Biochemical Cycles, 02, 221–229.

    Article  Google Scholar 

  • Kvenvolden, K. A. (1993). Gas hydrate- Geological prospective and global changes. American Geophysical Union, 32, 173–187.

    Google Scholar 

  • Kvenvolden, K. A. (1999). Potential effect of gas hydrate on human welfare. Proceeding National Academic Science USA, 96, 3420–3426.

    Article  Google Scholar 

  • Larionov, V. V., (1969). Borehole radiometry Moscow, U.S.S.R. In: Nedra, M. R. L., & Biggs, W. P., (Eds.) Using log-derived values of water saturation and porosity, Trans. SPWLA Annual Logging Symposium Paper, 10, 26.

  • Lee, M. W., & Collett, T. S. (2001). Elastic properties of gas hydrate-bearing sediments. Geophysics, 66(3), 763–771.

    Article  Google Scholar 

  • Lee, M. W., & Collett, T. S. (2012). Pore-and fracture-filling gas hydrate reservoirs in the Gulf of Mexico gas hydrate joint industry project leg II Green Canyon 955 H well. Marine and Petroleum Geology, 34(1), 62–71.

    Article  Google Scholar 

  • Lee, M. W., Hutchinson, D. R., Collett, T. S., & Dillon, W. P. (1996). Seismic velocities for hydrate bearing sediments using weighted equation. Journal of Geophysical Research: Solid Earth, 101(B9), 20347–20358.

    Article  Google Scholar 

  • Li, Z. D., Tian, X., Li, Z., Xu, J. Z., Zhang, H. X., & Wang, D. J. (2020). Experimental study on growth characteristics of pore-scale methane hydrate. Energy Reports, 6, 933–943.

    Article  Google Scholar 

  • Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysts in porous media. Cambridge University Press.

    Book  Google Scholar 

  • Mindlin, R. D. (1949). Compliance of elastic bodies in contact. Journal of Applied Mechanics, ASME, 16, 259–268.

    Article  Google Scholar 

  • Moridis, G. J., Collett, T. S., Boswell, R., Kurihara, M., Reagan, M. T., Sloan, E. D., & Koh, C. (2009). Toward production from gas hydrates: assessment of resources and technology and the role of numerical simulation. SPE 114163 SPE Journal, 12(5), 745–771.

    Google Scholar 

  • Moridis, G. J., Silpngarmlert, S., Reagan, M. T., Collett, T., & Zhang, K. (2011). Gas production from a cold, stratigraphically bounded hydrate deposit at the Mount Elbert site, North Slope, Alaska. Journal of Marine and Petroleum Geology, 28, 517–534.

    Article  Google Scholar 

  • Murphy, W. F. III, (1982). Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials. Ph.D. Dissertation, Stanford University.

  • Nagao, J., Shimomura, N., Ebinuma, T., & Narita, H., (2008). Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy, The International Society of Offshore and Polar Engineers (ISOPE) Abstract.

  • Nanda, J., Shukla, K. M., Lall, M. V., Yadav, U. S., & Kumar, P. (2019). Lithofacies characterization of gas hydrate prospects discovered during the National Gas Hydrate Program Expedition 02, offshore Krishna-Godavari Basin, India. Journal of Marine and Petroleum Geology., 108, 226–238.

    Article  Google Scholar 

  • Nobes, D. C., Villinger, H., Davis, E. E., & Law, L. K. (1986). Estimation of marine sediment bulk physical properties at depth from seafloor geophysical measurements. Journal of Geophysical Research: Solid Earth, 91(B14), 14033–14043.

    Article  Google Scholar 

  • Nur, A., Mavko, G., Dvorkin, J., & Galmudi, D. (1998). Critical porosity: A key to relating physical properties to porosity in rocks. The Leading Edge, 17, 357–362.

    Article  Google Scholar 

  • Pandey, L., Sain, K., & Joshi, A. K. (2019). Estimate of gas hydrate saturations in the Krishna-Godavari basin, eastern continental margin of India, results of expedition NGHP-02. Journal of Marine and Petroleum Geology., 108, 581–594.

    Article  Google Scholar 

  • Ramana, M. V., Nair, R. R., Sarma, K. V. L. N. S., Ramprasad, T., Krishna, K. S., Subrahmanyam, V., Maria, D., Subrahmanyam, C., Paul, J., Subrahmanyam, A. S., & Chandra Sekhar, D. V. (1994). Mesozoic anomalies in the Bay of Bengal. Earth and Planetary Science Letters, 121, 469–475.

    Article  Google Scholar 

  • Ramana, M. V., Ramprasad, T., Desa, M., Sathe, A. V., & Sethi, A. K. (2006). Gas hydrate related proxies inferred from multidisciplinary investigations in the Indian offshore areas. Current Science, 91, 183–189.

    Google Scholar 

  • Rao, G. N. (2001). Sedimentation, stratigraphy, and petroleum potential of Krishna-Godavari Basin, East Coast of India. AAPG Bulletin, 85, 1623–1643.

    Google Scholar 

  • Rastogi, A., Deka, B., Budhiraja, I. L., & Agarwal, G. C. (1999). Possibility of large deposits of gas-hydrates in deep waters of India. Marine Geo-Resources and Geotechnology, 17, 49–63.

    Article  Google Scholar 

  • Reuss, A. (1929). Berechnung der Fliessgrenzev von Mischkristallen auf Grund der Plastizitiitsbedingung fur Einkristalle. Zeitschrift Fur Angewandte Mathematik Und Mechanik, 9, 49–58.

    Article  Google Scholar 

  • Riedel, M., Collett, T. S., Malone, M. J. & Expedition 311 Scientists. (2006). Cascadia Margin Gas Hydrates, Expedition 311, Sites U1325-U1329, 28 August-28 October, 2005: Integrated Ocean Drilling Program Management International, Inc., for the Integrated Ocean Drilling Program, 311. http://iodp.tamu.edu/publications/exp311/311title.htm

  • Sain, K. (2017). Gas hydrate: A Possible Future Energy Resource. Journal of Geological Society of India, 89, 357–488.

    Article  Google Scholar 

  • Sain, K., & Gupta, H. (2012). Gas hydrate in India: Potential and development. Gondwana Research, 22, 645–657.

    Article  Google Scholar 

  • Shukla, K. M., Collett, T. S., Kumar, P., Yadav, U. S., Boswell, R., Frye, M., Riedel, M., Kaur, I., & Vishwanath, K. (2019). National gas hydrate program expedition 02: Identification of gas hydrate prospects in the Krishna-Godavari Basin, offshore India. Journal of Marine and Petroleum Geology, 108, 167–184.

    Article  Google Scholar 

  • Shukla, P. K., Singha, D. K., Yadav, P. K., & Sain, K. (2022). Petrophysical analysis and rock physics modelling for estimation of gas hydrate saturation: A case study in the Mahanadi basin. Journal of Geological Society of India, 98, 883–892.

    Article  Google Scholar 

  • Singha, D. K., & Chatterjee, R. (2018). Rock physics modeling in sand reservoir through well log analysis Krishna-Godavari Basin, India. Geomechanical and Engineering, 13, 99–117.

    Google Scholar 

  • Sloan, E. D. (1998). Clathrate hydrate of Natural gases. Marcel Dekker.

    Google Scholar 

  • Song, Y. C., Yang, M. J., Liu, Y., et al. (2009). Effect of ions on phase equilibrium of methane hydrate. Journal of Chemical Industry and Engineering, 60, 1362–1366.

    Google Scholar 

  • Spence, G. D., Haacke, R. R. & Hyndman, R. D. (2010). Seismic Indicators of Natural Gas Hydrate and Underlying Free Gas. Geophysical Developments Series (pp. 39-71). Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802197.ch4

  • Stern, L. A., Circone, S., Kirby, S. H., & Durham, W. B. (2001). Anomalous preservation of pure methane hydrate at 1 atm. The Journal of Physical Chemistry B, 105, 1756–1762.

    Article  Google Scholar 

  • Uchida, T., Sakurai, T., & Hondoh, T. (2011). Ice-shielding models for self preservation of gas hydrates. Journal of Chemistry and Chemical Engineering, 5, 691–705.

    Google Scholar 

  • Voigt, W. (1928). Lehrbuch der kristallphysik. Teubner Verlag.

    Google Scholar 

  • Waite, W. F., Jang, J., Collett, T. S., & Kumar, P. (2019). Downhole physical property-based description of a gas hydrate petroleum system in NGHP-02 Area C: A channel, levee, fan complex in the Krishna-Godavari Basin offshore eastern India. Journal of Marine and Petroleum Geology, 108, 272–295.

    Article  Google Scholar 

  • Winters, W. J., Wilcox-Cline, R. W., Long, P., Dewri, S. K., Kumar, P., Stern, L., & Kerr, L. (2014). Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas hydrate-reservoir systems. Marine and Petroleum Geology, 58, 139–167.

    Article  Google Scholar 

  • Wood, W., & Jung, W., (2008). Modeling the extent of Earth's marine methane hydrate cryosphere. In: Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), July 6–10, 2008, Vancouver, British Columbia, Canada, p. 8.

  • Yakushev, V. S. (1989). Gas hydrates in cryolithozone. Soviet Geology and Geophysics, 1, 100–105.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Directorate General of Hydrocarbons (DGH), Ministry of Petroleum & Natural Gas, Oil & Natural Gas Corporation (ONGC) Limited, Oil India Limited, the Gas Authority of India Limited (GAIL), and many other NGHP partner organizations of the Govt. of India for the acquisition of valuable well data under the Indian Expedition-02 and providing the post-expedition comprehensive report. The technical and science support from Japan Agency for Marine-Earth Science and Technology (JAMSTEC), United States Geological Survey (USGS), U.S. Department of Energy (US-DOE), the National Institute of Advanced Industrial Science and Technology (AIST), Geotek Coring, and Schlumberger are also gratefully acknowledged. DKS thanks the Science and Engineering Research Board (SERB) for providing him with a project under the Core Research Grant (FILENO.CRG/2022/003514) Program. KS acknowledges SERB-DST for providing him with the J.C. Bose National Fellowship to pursue geoscientific studies.

Funding

During research, the funding agency was Department of Science and Technology, New Delhi under INSPIRE Faculty project. Now the funding agency is Science and Engineering Research Board (SERB) (FILENO.CRG/2022/003514).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed substantially from conceptualization to data analysis up to the manuscript preparation. The individual contributions are as follows: PKY: Methodology, Analysis, Validation, Writing-Original draft preparation and Reviewing. DKS: Supervision, Investigation, Conceptualization, Data curation, Writing-Original draft preparation, Reviewing and Editing. KS: Data sharing, Visualization, Investigation, Reviewing and Editing.

Corresponding author

Correspondence to Dip Kumar Singha.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Singha, D.K. & Sain, K. Rock Physics Modelling for Estimation of Gas Hydrate Saturation Using NGHP-02 Well Data in the Krishna–Godavari Basin. Pure Appl. Geophys. 180, 2999–3018 (2023). https://doi.org/10.1007/s00024-023-03322-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03322-x

Keywords

Navigation