Skip to main content
Log in

Estimating Earthquake-Induced Tsunami Height Probabilities without Sampling

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Given a distribution of earthquake-induced seafloor elevations, we present a method to compute the probability of the resulting tsunamis reaching a certain size on shore. Instead of sampling, the proposed method relies on optimization to compute the most likely fault slips that result in a seafloor deformation inducing a large tsunami wave. We model tsunamis induced by bathymetry change using the shallow water equations on an idealized slice through the sea. The earthquake slip model is based on a sum of multivariate log-normal distributions, and follows the Gutenberg-Richter law for seismic moment magnitudes ranging from 7 to 9. For a model problem inspired by the Tohoku-Oki 2011 earthquake and tsunami, we quantify annual probabilities of differently sized tsunami waves. Our method also identifies the most effective tsunami mechanisms. These mechanisms have smoothly varying fault slip patches that lead to an expansive but moderately large bathymetry change. The resulting tsunami waves are compressed as they approach shore and reach close-to-vertical leading wave edge close to shore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An, C., Sepúlveda, I., & Liu, P.L.-F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 41(11), 3988–3994.

    Article  Google Scholar 

  • Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I., Babeyko, A., et al. (2021). Probabilistic tsunami hazard and risk analysis: A review of research gaps. Frontiers in Earth Science, 9, 628772.

    Article  Google Scholar 

  • Borzi, A., & Schulz, V. (2011). Computational optimization of systems governed by partial differential equations (Vol. 8). SIAM.

    Book  Google Scholar 

  • Crempien, J. G. F., Urrutia, A., Benavente, R., & Cienfuegos, R. (2020). Effects of earthquake spatial slip correlation on variability of tsunami potential energy and intensities. Scientific Reports, 10(1), 1–10.

    Article  Google Scholar 

  • Dao, M. H., & Tkalich, P. (2007). Tsunami propagation—A sensitivity study. Natural Hazards and Earth System Sciences, 7(6), 741–754.

    Article  Google Scholar 

  • De Los Reyes, J. C. (2015). Numerical PDE-constrained optimization. Springer.

    Book  Google Scholar 

  • Dematteis, G., Grafke, T., & Vanden-Eijnden, E. (2018). Rogue waves and large deviations in deep sea. Proceedings of the National Academy of Sciences, 115(5), 855–860.

    Article  Google Scholar 

  • Dematteis, G., Grafke, T., & Vanden-Eijnden, E. (2019). Extreme event quantification in dynamical systems with random components. SIAM/ASA Journal on Uncertainty Quantification, 7(3), 1029–1059.

    Article  Google Scholar 

  • Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., & Kaneda, Y. (2011). The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis. Science, 334(6060), 1240–1240. https://doi.org/10.1126/science.1211554

    Article  Google Scholar 

  • Gao, D., Wang, K., Insua, T. L., Sypus, M., Riedel, M., & Sun, T. (2018). Defining megathrust tsunami source scenarios for northernmost Cascadia. Natural Hazards, 94(1), 445–469.

    Article  Google Scholar 

  • Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., Geist, E. L., Glimsdal, S., González, F. I., Griffin, J., et al. (2017). Probabilistic tsunami hazard analysis: Multiple sources and global applications. Reviews of Geophysics, 55(4), 1158–1198.

    Article  Google Scholar 

  • Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288.

    Article  Google Scholar 

  • Hashima, A., Becker, T. W., Freed, A. M., Sato, H., & Okaya, D. A. (2016). Coseismic deformation due to the 2011 Tohoku-oki earthquake: Influence of 3-D elastic structure around Japan. Earth, Planets and Space, 68(1), 1–15.

    Article  Google Scholar 

  • Hesthaven, J. S., & Warburton, T. (2007). Nodal discontinuous Galerkin methods: Algorithms, analysis, and applications. Springer.

    Google Scholar 

  • Hinze, M., Pinnau, R., Ulbrich, M., & Ulbrich, S. (2009). Optimization with PDE constraints. Springer.

    Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (2013). Tohoku earthquake: A surprise? Bulletin of the Seismological Society of America, 103(2B), 1181–1194.

    Article  Google Scholar 

  • Lavallée, D., & Archuleta, R. J. (2003). Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California, earthquake. Geophysical Research Letters, 30(5), 622–640.

    Article  Google Scholar 

  • Lavallée, D., Liu, P., & Archuleta, R. J. (2006). Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophysical Journal International, 165(2), 622–640.

    Article  Google Scholar 

  • LeVeque, R. J., Waagan, K., González, F. I., Rim, D. & Lin, G. (2016) Generating random earthquake events for probabilistic tsunami hazard assessment. In Global Tsunami Science: Past and Future (vol. I, pp. 3671–3692). Cham: Birkhäuser.

  • Liu, J. S. (2001). Monte Carlo strategies in scientific computing (Vol. 10). Springer.

    Google Scholar 

  • Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research: Solid Earth, 107(B11), 10.

    Article  Google Scholar 

  • Murotani, S., Miyake, H., & Koketsu, K. (2008). Scaling of characterized slip models for plate-boundary earthquakes. Earth, Planets and Space, 60(9), 987–991.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed.). Springer.

    Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Article  Google Scholar 

  • Rackwitz, R. (2001). Reliability analysis—A review and some perspectives. Structural Safety, 23(4), 365–395.

    Article  Google Scholar 

  • Tong, S., Vanden-Eijnden, E., & Stadler, G. (2021). Extreme event probability estimation using PDE-constrained optimization and large deviation theory, with application to tsunamis. Communications in Applied Mathematics and Computational Science, 16(2), 181–225.

    Article  Google Scholar 

  • Williamson, A. L., Rim, D., Adams, L. M., LeVeque, R. J., Melgar, D., & González, F. I. (2020). A source clustering approach for efficient inundation modeling and regional scale probabilistic tsunami hazard assessment. Frontiers in Earth Science, 8, 591663.

  • Zhan, Z., Helmberger, D., Simons, M., Kanamori, H., Wu, W., Cubas, N., Duputel, Z., Chu, R., Tsai, V. C., Avouac, J.-P., et al. (2012). Anomalously steep dips of earthquakes in the 2011 Tohoku-Oki source region and possible explanations. Earth and Planetary Science Letters, 353, 121–133.

    Article  Google Scholar 

Download references

Funding

S. T. and G. S. were partially supported by the US National Science Foundation (NSF) through Grant DMS #1723211. E. V.-E. was supported in part by the NSF Materials Research Science and Engineering Center Program Grant DMR #1420073, by NSF Grant DMS #152276, by the Simons Collaboration on Wave Turbulence, Grant #617006, and by ONR Grant #N4551-NV-ONR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanyin Tong.

Ethics declarations

Conflict of Interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, S., Vanden-Eijnden, E. & Stadler, G. Estimating Earthquake-Induced Tsunami Height Probabilities without Sampling. Pure Appl. Geophys. 180, 1587–1597 (2023). https://doi.org/10.1007/s00024-023-03281-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03281-3

Keywords

Navigation