Skip to main content
Log in

The 24 January 2020 Mw 5.0 El Aouana Earthquake, Northeastern Algeria: Insights into a New NW–SE Right-Lateral Bejaia-Babors Shear Zone

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On January 24, 2020, a Mw 5.0 earthquake occurred in the El Aouana region, northeastern Algeria. This region is located at the western end of the Lesser Kabylian Block (LKB), a rigid body that was weakly deformed during the late Cenozoic tectonic phase, and it is characterized by a lower seismic activity than that in its bounding regions. The mainshock focal mechanism was estimated via both the P-wave first motion and waveform modeling methods. The earthquake was associated with the rupture of a NW–SE-oriented right-lateral strike-slip fault, as revealed by a 6 km long and 2 km wide aftershock cluster. The seismic moment estimated through waveform modeling was 3.6 × 1016 Nm, while spectral analysis yielded a value of 3.9 × 1016 Nm corresponding to a magnitude of Mw 5.0, a source radius of 1.6 km, and a stress drop of 4 MPa. The spatiotemporal evolution of the aftershock sequence, as modeled using a restricted epidemic-type aftershock sequence (RETAS) stochastic model, yielded a slope p = 1, indicating that the earthquake was generated by tectonic forces and that the aftershock sequence included many subsequences. The calculated stress tensor suggested N–S compression, rotated clockwise relative to NW–SE Eurasia–Africa convergence. Finally, the recent seismic activity (2012–2021) and geological observations in the area led to the suggestion of a new NW–SE right-lateral shear zone, namely, the Bejaia-Babors shear zone, which was incorporated into a seismotectonic growth model involving slip along inherited E–W structures. The pattern of stepover structures throughout this wide shear zone was enhanced during the recent seismic evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datum collected from the Algerian Seismological Network, which includes permanent and mobile stations, is primarily used by Algerian researchers. CRAAG, as a research center under the Algerian Interior Ministry, manages the country's national security, including natural hazards. CRAAG is not a Data Management Center like well-known international centers such as IGN (Spain), but it has agreements and conventions with international agencies such as CESM, IGN, and ISC for data exchange, as per the ministry's policy. The data are also used for training young Algerian seismologists to build capacity and expertise in seismology within Algeria or for collaboration with foreign researchers under intra-institutional conventions. This supports Algeria's need for researchers and promotes advancement in the field of seismology.

References

  • Abacha, I. (2015). Étude de la sismicité de la région Nord-Est de l’Algérie, Thèse de Doctorat, Université Ferhat Abbas-Sétif (Algérie). http://dspace.univ-setif.dz:8888/jspui/handle/123456789/1802

  • Abacha, I., Boulahia, O., Yelles-Chaouche, A., Semmane, F., Beldjoudi, H., & Bendjama, H. (2019). The 2010 Beni-Ilmane, Algeria, Earthquake Sequence: Statistical Analysis, Source Parameters, and Scaling Relationships. Journal of Seismology, 23(1), 181–193.

    Article  Google Scholar 

  • Abacha, I., & Yelles-Chaouche, A. (2019). Overview of Recent Seismic Activity in Northeastern Algeria. In: Sundararajan, N., Eshagh, M., Saibi, H., Meghraoui, M., Al-Garni, M., Giroux, B. (eds) On Significant Applications of Geophysical Methods. CAJG 2018. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-01656-2_46

  • Abacha, I., Yelles-Chaouche, A., & Boulahia, O. (2022). Statistical Study of Earthquake Swarms in Northeastern Algeria with Special Reference to the Ain Azel Swarm; Hodna Chain, 2015. In: Advances in Geophysics, Tectonics and Petroleum Geosciences. CAJG 2019. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-73026-0_34

  • Abbes, K., Dorbath, C., Dorbath, L., et al. (2019). Revisiting the Laalam (Eastern Algeria) March 20, 2006 (Mw 5.1) Earthquake and its Seismotectonic Implication. Pure and Applied Geophysics, 176, 4213–4222. https://doi.org/10.1007/s00024-019-02206-3

    Article  Google Scholar 

  • Alvarez, W., Cocozza, T., & Wezel, F. C. (1974). Fragmentation of the Alpine ergogenic chain by microplate dispersal. Nature, 248, 309–314.

    Article  Google Scholar 

  • Andrieux, J., Fontbote, J. M., & Mattauer, M. (1971). Sur un modele explicatif de l’arc de Gibraltar. Earth and Planetary Science Letters, 12, 191–198. https://doi.org/10.1016/0012-821X(71)90077-X

    Article  Google Scholar 

  • Arab, M., Rabineau, M., Déverchère, J., Bracène, R., Belhai, D., Roure, F., Marok, A., Bouyahiaoui, B., Granjeon, D., Andriessen, P., & Sage, F. (2016). Tectonostratigraphic evolution of the eastern Algerian margin and basin from onshore-offshore correlation. Marine and Petroleum Geology, 77, 1355–1375.

    Article  Google Scholar 

  • Archuleta, R. J., Cranswick, E., Mueller, C., & Spudich, P. (1982). Source parameters of the 1980 Mammoth Lakes, California, earthquake sequence. Journal of Geophysical Research, 87, 4595–4697.

    Article  Google Scholar 

  • Beldjoudi, H., Guemache, M.A., Kherroubi, A., Semmane, F., Yelles-Chaouche, A.K., Djellit, H., Amrani, A., & Haned, A. (2009). The Laalam (Bejaia, North-East Algeria) moderate earthquake (Mw = 5.2) on March 20th, 2006. Pure and Applied Geophysics 166((4), 623–640

  • Bendjama, H., Yelles-Chaouche, A.K., Boulahai, O., Abacha, I., Mohammedi, Y., Beldjoudi, H., Rahmani, S.T., Belheouane, O. (2021). The March 2017 earthquake sequence along the E–W-trending Mcid Aicha–Debbagh Fault, Northeast Algeria. Geosciences Journal. https://doi.org/10.1007/s12303-020-0059-y pISSN 1226-4806 eISSN 1598-7477

  • Berberian, M., Qorashi, M., Jackson, J. A., Priestley, K., & Wallace, T. (1992). The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance. Bulletin of the Seismological Society of America, 82(4), 1726–1755. https://doi.org/10.1785/BSSA0820041726

    Article  Google Scholar 

  • Bougrine, A., Yelles-Chaouche, A. K., & Calais, E. (2019). Active deformation in Algeria from continuous GPS measurements. Geophysical Journal International, 217, 572–588. https://doi.org/10.1093/gji/ggz035

    Article  Google Scholar 

  • Bouillin, J.P. (1986). Le “bassin maghrebin” ; une ancienne limite entre l’Europe et l’Afrique à l’ouest des Alpes, Bull. Soc. Géol. Fr., II (4), 547–558.

  • Bouillin, J.P., Durand-Delga, M., & Olivier, P. (1986). Betic-rifian and tyrrhenian arcs: Distinctive features, genesis and development stages. In: Developments in Geotectonics. Elsevier, pp 281–304

  • Boukaoud, H., Godard, G., Chabou, M. C., Bouftouha, Y., & Doukkari, S. A. (2021). Petrology and geochemistry of the Texenna ophiolites, northeastern Algeria: Implications for the Maghrebian flysch suture zone. Lithos, 390–391, 106019. https://doi.org/10.1016/j.lithos.2021.106019

    Article  Google Scholar 

  • Boulahia, O., Abacha, I., Yelles-Chaouche, A.K., Bendjama, H., Kherroubi, A., Mohammedi, M., Aidi, C., & Chami. (2021). Recent seismic activity in the Bejaia–Babors region (Northeastern Algeria): the case of the 2012–2013 Bejaia earthquake sequences. Pure Appl Geophys. https://doi.org/10.1007/s00024-021-02711-4

  • Bourouis, S., & Cornet, F. H. (2009). Microseismic activity and fluid fault interactions: Some results from the Corinth Rift Laboratory (CRL), Greece. Geophysical Journal International, 178, 561–580.

    Article  Google Scholar 

  • Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.

    Article  Google Scholar 

  • Brune, J. N. (1971). Correction (to Brune 1970). Journal of Geophysical Research, 76, 5002.

    Google Scholar 

  • Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24, 1025–1028.

    Article  Google Scholar 

  • Chatelain, J.L. (1978) Etude fine de la sismicité en zone de collision continentale à l’aide d’un réseau de stations portables : la région Hindu-Kush-Pamir. Thèse de 3eme cycle, Univ. Paul Sabatier, Toulouse.

  • Chazot, G., Abbassene, F., Maury, R. C., Déverchère, J., Bellon, H., Ouabadi, A., & Bosch, D. (2017). An overview on the origin of post-collisional Miocene magmatism in the Kabylies (northern Algeria): Evidence for crustal stacking, delamination and slab detachment. Journal of African Earth Sciences, 125, 27–41. https://doi.org/10.1016/j.jafrearsci.2016.10.005

    Article  Google Scholar 

  • Chen, X., Shearer, P. M., & Abercrombie, R. E. (2012). Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fluid diffusion. Journal of Geophysics Research. https://doi.org/10.1029/2011JB008973

    Article  Google Scholar 

  • Christie-blick, N., & Biddle, K.T. (1985). Deformation and basin formation along strike-slip faults. In: Biddle, K. T. & Christie-blick, N. (eds) Strike-Slip Deformation, Basin Formation, and Sedimentation. SEPM Special Publications, 37, 1–34.

  • Cohen, C. R. (1980). Plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean. Tectonophysics, 68, 283–311.

    Article  Google Scholar 

  • Crowell, J.C. (1974a). Sedimentation along the San Andreas Fault, California. In: Dott, R. H. & SHAVER, R. H. (eds) Modern and Ancient Geosynclinal Sedimentation. SEPM Special Publications, 19, 292–303.

  • Crowell, J.C. (1974b). Origin of late Cenozoic basins of southern California. In: Dickinson, W. R. (ed.) Tectonics and Sedimentation. SEPM Special Publications, 22, 190–204.

  • Delvaux, D. (2012). Release of program Win-Tensor 4.0 for tectonic stress inversion: statistical expression of stress parameters. EGU General Assembly, Vienna, Apr. 22–27, EGU2012-5899.

  • Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., & San’kov, V. (1997). Paleostress reconstructions and geodynamics of the Baikal region, central Asia, Part 2. Cenozoic rifting, Tectonophysics, 282(1), 1–38

  • Déverchère, J., Yelles, K., Domzig, A., Mercier de Lépinay, P., Bouillin, J-P., Gaullier, V., Bracène, R., Calais, E., Savoye, B., Kherroubi, K., 2 Le Roy, P., Pauc, H., & Dan, G. (2005). Active thrust faulting offshore Boumerd`es, Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophysical Research Letters 32, L04311. https://doi.org/10.1029/2004GL021646

  • Dewey, J.F., Helman, M.L., Turco, E., Hutton, D.H.W., & Knott, S.D. (1989). Kinematics of the Western Mediterranean. In Alpine Tectonics, 265–283, eds Coward, M.P., Dietrich, D. & Park, R.G., Geol. Soc. Spec. Publ.45, London.

  • Domzig, A. (2006). Déformation active et récente, et structuration tectonosédimentaire de la marge sous-marine algérienne, Thèse de Doctorat. dissertation, 333 pp., Inst. Univ. Eur. de la Mer, Brest Univ., Brittany, France.

  • Durand-Delga, M. (1969). Mise au point sur la structure du Nord-Est de la Berbérie. Publ Serv Géol Algérie N° 39:89–131

  • Duverger, C., Godano, M., Bernard, P., Lyon-Caen, H., & Lambotte, S. (2015). The 2003–2004 seismic swarm in the western Corinth rift: Evidence for a multiscale pore pressure diffusion process along a permeable fault system. Geophysical Research Letters, 42, 7374–7382. https://doi.org/10.1002/2015GL065298

    Article  Google Scholar 

  • Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics, Monograph 38, SIAM, Philadelphia.

  • Fossen, H. (2020). Fault classification, fault growth and displacement, Regional Geology and Tectonics: Principles of Geologic Analysis, pp. 119–147.

  • Fossen, H., & Cavalcante, G. C. G. (2017). Shear zones—A review. Earth-Science Reviews, 171, 434–455. https://doi.org/10.1016/j.earscirev.2017.05.002

    Article  Google Scholar 

  • Fossen, H., Johansen, S. E., Hesthammer, J., & Rotevatn, A. (2005). Fault interaction in porous sandstone and implications for reservoir management; examples from southern Utah. American Association of Petroleum Geologists Bulletin, 89, 1593–1606.

    Article  Google Scholar 

  • Glaçon, J. (1967). Recherches sur la géologie et les gîtes métallifères du Tell sétifien. Bulletin du Service Géologique de l’Algérie, 552 p.

  • Gospodinov, D., & Rotondi, R. (2006). Statistical Analysis of Triggered Seismicity in the Kresna Region of SW Bulgaria (1904) and the Umbria-Marche Region of Central Italy (1997). Pure application geophys. 163, 1597–1615. https://doi.org/10.1007/s00024-006-0084-4

  • Guiraud, R. (1977). Sur la neotectonique des regions ouest-constantinoises. Bulletin de la Societe Geologique de France S7-XIX:645–650. https://doi.org/10.2113/gssgfbull.S7-XIX.3.645

  • Harbi, A., Maouche, S., & Ayadi, A. (1999). Neotectonics and associate seismicity in the Eastern Tellian Atlas of Algeria. Journal of Seismology, 3, 95–104.

    Article  Google Scholar 

  • Harbi, A., Maouch, S., & Benhallou, H. (2003). Re-appraisal of seismicity and seismotectonics in the north-eastern Algeria Part II: 20th century seismicity and seismotectonics analysis. Journal of Seismology, 7, 221–234.

    Article  Google Scholar 

  • Jackson, J. (1992). Partitioning of strike-slip and convergent motion between Eurasia and Arabia in eastern Turkey and the Caucasus. JGR., 97(B9), 12471–12479. https://doi.org/10.1029/92JB00944

    Article  Google Scholar 

  • Jackson, J., Norris, R., & Youngson, J. (1996). The structural evolution of active fault and fold systems in central Otago, New Zealand: Evidence revealed by drainage patterns. Journal of Structural Geology, 18, 217–234.

    Article  Google Scholar 

  • Jin, K., & Kim, Y. (2020). Importance of surface ruptures and fault damage zones in earthquake hazard assessment: A review and new suggestions. Geological Society, London, Special Publications, 501, 205–224. https://doi.org/10.1144/SP501-2019-98

    Article  Google Scholar 

  • Kherroubi, A., Déverchère, J., Yelles, A. K., Mercier de Lépinay, B., Domzig, A., Cattaneo, A., Bracene, R., Gaullier, V., & Graindorge, D. (2009). Recent and active deformation pattern off the easternmost Algerian margin, western Mediterranean Sea: New eIVdence for contractional tectonic reactivation. Marine Geology, 261(1–4), 17–32. https://doi.org/10.1016/j.margeo.2008.05.016

    Article  Google Scholar 

  • Kim, Y.-S., Andrews, J. R., & Sanderson, D. J. (2001). Reactivated strike-slip faults: Examples from north Cornwall, UK. Tectonophysics, 340, 173–194.

    Article  Google Scholar 

  • Kim, Y.-S., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26, 503–517.

    Article  Google Scholar 

  • Kirèche, O. (1993). Evolution géodynamique de la marge tellienne des maghrebides d’après l’étude du domaine parautochtone schistose

  • Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference model in local earthquake tomography. Journal of Geophysical Research, 99, 19635–19646.

    Article  Google Scholar 

  • Klein, F. (2002). User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes, USGS Open-File Report 02–171, vers. 1, p 123.

  • Klingelhoefer, F., Déverchère, J., Graindorge, D., Aïdi, C., Badji, R., Bouyahiaoui, B., Leprêtre, A., Mihoubi, A., Beslier, M. O., Charvise, P., Schnurl, P., Sage, F., Medaouri, M., Arab, M., Bracene, R., Yelles-Chaouche, A. K., Badsi, M., Galvé, A., & Géli, L. (2022). Formation, segmentation and deep crustal structure variations along the Algerian margin from the SPIRAL seismic experiment. Journal of African Earth Sciences, 186, 104433. https://doi.org/10.1016/j.jafrearsci.2021.104433

    Article  Google Scholar 

  • Kohketsu, K. (1985). The extended reflectivity method for synthetic near field seismograms. Journal of Physics of the Earth, 33, 121–131.

    Article  Google Scholar 

  • Lin, J., & Stein, R. S. (2004). Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research, 109, B02303. https://doi.org/10.1029/2003JB002607

    Article  Google Scholar 

  • Marre, A. (1992). Le Tell oriental algérien de Collo à la frontière tunisienne: Etude géomorphologique. O.P.U Alger, Volume II, Pages 413 à 624.

  • Mauffret, A., Frizon de Lamotte, F., Lallemant, S., Gorini, C., & Maillard, A. (2004). E-W opening of the Algerian Basin (Western Mediterranean). Terra Nova, 16, 257–264. https://doi.org/10.1111/j.1365-3121.2004.00559.x

    Article  Google Scholar 

  • McGrath, A. G., & Davison, I. (1995). Damage zone geometry around fault tips. Journal of Structural Geology, 17, 1011–1024.

    Article  Google Scholar 

  • Meghraoui, M. (1988). Géologie des zones sismiques du nord de l’Algérie (paléosismologie, Tectonique active et synthèse sismotectonique). Thèse de Doctorat, université de Paris sud, Orsay, France

  • Meghraoui, M., & Pondrelli, S. (2012). Active faulting and transpression tectonics along the plate boundary in North Africa. Annals of Geophysics, 55(5), 2012. https://doi.org/10.4401/ag-4970

    Article  Google Scholar 

  • Mihoubi, A., Schnürle, P., Benaissa, Z., Badsi, M., Bracene, R., Djelit, H., Geli, L., Sage, F., Agoudjil, A., Klingelhoefer, F., Schnurle, P., & Benaissa, Z. (2014). Seismic imaging of the eastern Algerian margin off Jijel: Integrating wide-angle seismic modeling and multichannel seismic pre-stack depth migration. Geophysical Journal International, 198, 1486–1503. https://doi.org/10.1093/gji/ggu179

    Article  Google Scholar 

  • Obert, D. (1981). Etude géologique des Babors orientaux (domaine tellien, Algérie). Thèse de Doctorat d’Etat, Université´ de Paris-VI, Mèm. Sc. Terre 81–32, 635 pp.

  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of American Statistical Association, 83(401), 9–27. https://doi.org/10.1080/01621459.1988.1047856

    Article  Google Scholar 

  • Ogata, Y. (1998). Space-time point process models for earthquakes occurrences. Annals of the Institute of Statistical Mathematics, 50, 379–402.

    Article  Google Scholar 

  • Poli, M. E., & Renner, G. (2004). Normal focal mechanisms in the Julian Alps and Prealps: Seismotectonic implications for the Italian-Slovenian border region. Bollettino Di Geofisica Teorica ed Applicata, 45(1–2), 51–69.

    Google Scholar 

  • Raoult, J.F. (1974). Géologie Du Centre De La Chaîne Numidique : Nord Du Constantinois, Algérie. Mémoires de la Société géologique de France, 162 p.

  • Reuther, C-D., Ben-Avraham., Grasso, M. (1993). Origin and role of major strike-slip transfers during plate collision in the central Mediterranean. Terra Nova, 5, 249–257

  • Robin, C. (1970). Etude g6odynamique du massif volcanique de Cap Cavallo. Th~se de 3~me Cycle Uni. P. et M. Curie, Paris VI, 130 pp

  • Rothé, J.P. (1950). Les séismes de Kherrata et la sismicité de l’Algérie. Publ Serv Cartes Geol Algérie 4 ème série

  • Riedel, W. (1929). Zur mechanik geologischer brucherscheinungen. Centralblatt Fur Minerologie, Geologie, Und Paleontologie, 1929B, 354.

    Google Scholar 

  • Rivera, L., & Cisternas, A. (1990). Stress tensor and fault plane solutions for a population of earthquakes. Bulletin of the Seismological Society of America, 80(3), 600–614.

    Google Scholar 

  • Schettino, A., & Turco, E. (2006). Plate kinematics of the Western Mediterranean region during the Oligocene and Early Miocene. Geophysical Journal International, 166, 1398–1423. https://doi.org/10.1111/j.1365-246X.2006.02997.x

    Article  Google Scholar 

  • Soumaya, A., Ben-Ayed, N., Rajabi, M., Meghraoui, M., et al. (2018). Active faulting geometry and stress pattern near complex strike-slip systems along the Maghreb region: Constraints on active convergence in the western Mediterranean. Tectonics, 37, 3148–3173

  • Strzerzynski, P., Déverchère, J., Cattaneo, A., Domzig, A., Yelles, K., Mercier de Lépinay, B., Babonneau, N., & Boudiaf, A. (2010). Tectonic inheritance and Pliocene-Pleistocene inversion of the Algerian margin around Algiers: Insights from multibeam and seismic reflection data. Tectonics https://doi.org/10.1029/2009TC002547

  • Sylvester, A. G. (1988). Strike-slip faults. Geological Society of America Bulletin, 100, 1666–1703.

    Article  Google Scholar 

  • Talebian, M., & Jackson, J. (2002). Offset on the Main Recent Fault of NW Iran and Implication for the Late Cenozoic Tectonics of the Arabia-Eurasia Collision Zone. Geophysical Journal International, 150, 422–439. https://doi.org/10.1046/j.1365-246X.2002.01711.x

    Article  Google Scholar 

  • Tingay, M., Morley, C., Hillis, R. R., & Meyer, J. J. (2010). Present-day stress orientation in Thailand’s basins. Journal of Structural Geology, 32, 235–248.

    Article  Google Scholar 

  • Toda, S., Stein, R.S., Richards-Dinger, K., Bozkurt, S.B. (2005). Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J. Geophys. Res. Solid Earth 110. van Hinsbergen, D.J.J., Vissers, R.L.M.,

  • Vila, J.M. (1980). La chaîne alpine d’Algérie Orientale et des confins algéro-tunisiens. Thèse de Doctorat, Université P. et M. Curie-Paris.

  • Villemaire, C. (1988). Les amas sulfurés du massif miocène d’El Aouana (Algérie)- I. Dynamisme de mise en place des roches volcaniques et implications métallogéniques. Journal of African Earth Sciences, 7, 133–148. https://doi.org/10.1016/0899-5362(88)90060-7

    Article  Google Scholar 

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bulletin of the Seismological Society of America, 90, 1353–1368.

    Article  Google Scholar 

  • Wesnousky, S. (1988). Seismological and structural evolution of strike-slip faults. Nature, 335, 340–343. https://doi.org/10.1038/335340a0

    Article  Google Scholar 

  • Yagi, Y., & Nishimura, N. (2011). Moment tensor inversion of near-source seismograms. Bulletin of International Institute of Seismology and Earthquake Engineering, 45, 133–138.

    Google Scholar 

  • Yale, D.P. (2003). Fault and stress magnitude controls on variations in the orientation of in situ stress. In: Ameen, M. (Ed.), Fracture and in-situ stress characterization of hydrocarbon reservoirs: Geological Society of London Special Publication, vol. 209, pp. 55–64.

  • Yelles-Chaouche, A. K., Abacha, I., Boulahia, O., Aidi, C., Chami, A., Belheouane, A., Rahmani, S. T., & Roubeche, K. (2021). The 13 July 2019 Mw 50 Jijel Earthquake, northern Algeria: An indicator of active deformation along the eastern Algerian margin. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2021.104149

    Article  Google Scholar 

  • Yelles-Chaouche, A.K., Boudiaf, A., Djellit, H., & Bracene, R. (2006). La tectonique active de la région nord-algérienne. C. R. Géosciences. 1–14.

  • Yelles-Chaouche, A. K., Roger, J., Deverchere, J., Bracene, R., Domzig, A., Hébert, H., & Kherroubi, A. (2009). The 1856 Tsunami of Djidjelli (Eastern Algeria): Seismotectonics, Modelling and Hazard Implications for the Algerian Coast. Pure and Applied Geophysics, 166, 283–300. https://doi.org/10.1007/s0002400804336

    Article  Google Scholar 

Download references

Acknowledgements

During the review process, we were surprised by the news announcing the retirement of Prof. Abdelkarim Yelles-Chaouche. We dedicate this work to him, and may his retirement be as remarkable as his efforts in mentoring us. A special thanks to Editor Carla Filomena Braitenberg and two anonymous reviewers for their insightful comments on the original version of the paper. This work was supported by CRAAG, the department of seismology (Project ES-04-2020).

Funding

No funding has been received from any organization.

Author information

Authors and Affiliations

Authors

Contributions

AI and HB conceived, interpreted the results, and wrote the main manuscript text. AI and OB collected the data. AI produced the figures and participated in the processing of data. OB, KR, and STR participated in the processing of data. HF and AYC reviewed the manuscript and participated in the interpretation of the results. MCC worked out the onshore geologic evidence in the discussion and YM wrote the geologic framework and prepared the geologic map. E-MT redid the relocations, estimated the relocation errors using bootstrapping, and analyzed the spatio-temporal evolution. CA helped in collecting permanent station records. All authors reviewed the manuscript.

Corresponding author

Correspondence to Issam Abacha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

24_2023_3265_MOESM1_ESM.jpg

Supplementary file1 a Moment tensor solution and best-fit waveforms for the January 24, 2020, Mw 5.0 El Aouana mainshock (MS) event. The black and red lines indicate the observed and synthetic data, respectively. The values in the legend at the top denote the moment tensor parameters, best-fit fault-plane solutions, scalar moment M0, Mw, variance, and focal depth. The text labels on each trace are the amplitudes in cm s-1. The stations used in the moment tensor inversion are shown in Fig. 3a. b Idem for the February 21, 2020, Mw 4.4 largest aftershock (LA) (JPG 3368 KB)

24_2023_3265_MOESM2_ESM.jpg

Supplementary file2 Example displacement spectra at station ABSD. Left panel: Three-component instrumentally corrected velocity seismograms of the January 24, 2020, Mw 5.0 El Aouana mainshock. The pink shaded areas indicate the time windows used for the P-wave trains, which are represented in the central panels. Right panels: Displacement spectra of the P-wave seismograms. The blue, black, and purple lines are the fitted, observed, and smoothed spectra, respectively. The red dots indicate Ω0 (lower frequency) and fc (higher frequency) (JPG 2959 KB)

Supplementary file3 Examples of event groups with CC ≥ 0.8 recorded at stations SP01 and CDFR (JPG 2709 KB)

24_2023_3265_MOESM4_ESM.jpg

Supplementary file4 Lower hemisphere equal-area projections of the focal sphere for the current study earthquakes. The polarity observations at each station are shown as plain circles: white if the polarity is compressional and black if it is dilatational (JPG 3455 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abacha, I., Boulahia, O., Yelles-Chaouche, A. et al. The 24 January 2020 Mw 5.0 El Aouana Earthquake, Northeastern Algeria: Insights into a New NW–SE Right-Lateral Bejaia-Babors Shear Zone. Pure Appl. Geophys. 180, 1945–1971 (2023). https://doi.org/10.1007/s00024-023-03265-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03265-3

Keywords

Navigation