Skip to main content
Log in

Revisiting the Precursors of Cyclonic Systems in the CORDEX RCM REMO2009 Simulations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Tropical Cyclonic Disturbances (TCDs) over the Bay of Bengal (BoB) have always disrupted life, economy and environment across the coastal regions. The present study evaluates the ability of COoordinated Regional Climate Downscaling Experiment (CORDEX) constituting regional climate model (here REMO2009) in simulating the behaviour of some precursors of TCDs, frequency of TCDs and their intensity over the BoB. Furthermore, the impacts of El Niño Southern Oscillations (ENSO) and Indian Ocean Dipole (IOD) are addressed to determine the sensitivity of the model in capturing large-scale ocean-atmosphere coupled phenomena. The model outputs (resolution 0.44° × 0.44°) are evaluated against the recorded observations of India Meteorological Department and ERA-Interim reanalysis (resolution 0.25° × 0.25°) over the time period 1979–2005. Evaluation of TCD frequencies and intensities on a year-to-year basis shows the model performing reasonably well against observations but intensity is largely reduced. Also, we find an overestimated number of TCDs in the model as pre-monsoon (post-monsoon) shows + 195% (+ 80%) more TCDs. The large-scale environmental fields associated with TCDs show spatiotemporal biases of varying magnitudes in the model however are consistent in capturing TCDs and their behaviours. The mean climatology shows clear differences in environmental fields during days with TCDs and without TCDs. The genesis geolocations in observations are coherent with their environmental fields and are firmly reproduced in the model albeit with spatial differences. The intensity in the model is found to be mostly low showing weak TCDs besides overestimating (underestimating) TCDs of moderate (high) intensities. The REMO2009 model is found satisfactorily simulating the TCDs (year-to-year basis) and associated large-scale environmental fields against the observations and reanalysis. The impacts of large climatic teleconnections (ENSO and IOD) are also captured in the model with warm ENSO phase suppressing the TCDs activities while cold phase triggering the TCDs. On the similar watch, a negative dipole over the Indian Ocean triggers the TCDs while a positive dipole suppresses the TCDs formation in the model. The present study using the regional climate model (RCM) REMO2009 is moreover a needed baseline for the future projections and evaluation of other RCMs under the CORDEX domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw datasets used in the study are available in the public repositories maintained by respective institutions and subject to respective institutional policy of data sharing and use.

References

  • Alam, M. M., Hossain, M. A., & Shafee, S. (2003). Frequency of Bay of Bengal cyclonic storms and depressions crossing different coastal zones. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23, 1119–1125.

    Article  Google Scholar 

  • Allan, R., & Ansell, T. (2006). A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. Journal of Climate, 19(22), 5816–5842.

    Article  Google Scholar 

  • Avila, L. A., & Cangialosi, J. (2011) Hurricane Irene tropical cyclone report; Nat. Hurr. Cent. 14.

  • Balaguru, K., Taraphdar, S., Leung, L. R., & Foltz, G. R. (2014). Increase in the intensity of postmonsoon Bay of Bengal tropical cyclones. Geophysical Research Letters, 41, 3594–3601.

    Article  Google Scholar 

  • Bamston, A. G., Chelliah, M., & Goldenberg, S. B. (1997). Documentation of a highly ENSO-related SST region in the equatorial Pacific: Research note. Atmosphere Ocean, 35, 367–383.

    Article  Google Scholar 

  • Barat, A., Sarthi, P. P., Kumar, S., Kumar, P., & Sinha, A. K. (2020). Observed and simulated winter temperature over Gurudongmar area, North Sikkin, India. Mausam, 71, 115–124.

    Google Scholar 

  • Bathi, J. R., & Das, H. S. (2016). Vulnerability of coastal communities from storm surge and flood disasters. International Journal of Environmental Research and Public Health, 13, 239.

    Article  Google Scholar 

  • Bell, G. D., Halpert, M. S., Schnell, R. C., Higgins, R. W., Lawrimore, J., Kousky, V. E., Tinker, R., Thiaw, W., Chelliah, W., & Artusa, A. (2000). Climate assessment for 1999. Bulletin of the American Meteorological Society, 81, 1328.

    Article  Google Scholar 

  • Bender, M. A., Ginis, I., & Kurihara, Y. (1993). Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. Journal of Geophysical Research: Atmospheres, 98, 23245–23263.

    Article  Google Scholar 

  • Bengtsson, L. (2001). Hurricane threats. Science, 293, 440–441.

    Article  Google Scholar 

  • Bengtsson, L., Hodges, K. I., & Esch, M. (2007). Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus a: Dynamic, Meteorology and Oceanography, 59, 396–416.

    Article  Google Scholar 

  • Camargo, S. J. (2013). Global and regional aspects of tropical cyclone activity in the CMIP5 models. Journal of Climate, 26, 9880–9902.

    Article  Google Scholar 

  • Camargo, S. J., Barnston, A. G., & Zebiak, S. E. (2005). A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus a: Dynamic Meteorology and Oceanography, 57(4), 589–604.

    Article  Google Scholar 

  • Camargo, S. J., Emanuel, K. A., & Sobel, A. H. (2007). Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. Journal of Climate, 20, 4819–4834.

    Article  Google Scholar 

  • Camargo, S. J., Giulivi, C. F., Sobel, A. H., Wing, A. A., Kim, D., Moon, Y., Strong, J. D., Del Genio, A. D., Kelley, M., Murakami, H., & Reed, K. A. (2020). Characteristics of model tropical cyclone climatology and the large-scale environment. Journal of Climate, 33(11), 4463–4487.

    Article  Google Scholar 

  • Camargo, S. J., & Sobel, A. H. (2005). Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18, 2996–3006.

    Article  Google Scholar 

  • Chan, J. C. L. (1985). Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Monthly Weather Review, 113, 599–606.

    Article  Google Scholar 

  • Dare, R. A., & McBride, J. L. (2011). The threshold sea surface temperature condition for tropical cyclogenesis. Journal of Climate, 24, 4570–4576.

    Article  Google Scholar 

  • Davis, C. A. (2018). Resolving tropical cyclone intensity in models. Geophysical Research Letters, 45(4), 2082–2087.

    Article  Google Scholar 

  • De, U. S. & Joshi, K. S. (1995). Genesis of cyclonic disturbances over the North Indian Ocean-1891–1990; Sci. Rep. 47 India Meteorol. Dep. Pune-5, India, Pre-Published

  • De, U. S., & Joshi, K. S. (1999). Interannual and interdecadal variability of tropical cyclones over the Indian seas. The Deccan Geographer, 37, 5–21.

    Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., & Bauer, D. P. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal Royal Meteorological Society, 137, 553–597.

    Article  Google Scholar 

  • DeMaria, M., & Kaplan, J. (1994). A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather and Forecasting, 9, 209–220.

    Article  Google Scholar 

  • Deshpande, M., Singh, V. K., Ganadhi, M. K., Roxy, M. K., Emmanuel, R., & Kumar, U. (2021). Changing status of tropical cyclones over the north Indian Ocean. Climate Dynamics, 57(11), 3545–3567.

  • Diro, G. T., Giorgi, F., Fuentes-Franco, R., Walsh, K. J. E., Giuliani, G., & Coppola, E. (2014). Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Climate Change, 125, 79–94.

    Article  Google Scholar 

  • Dowdy, A. J. (2016). Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world. Science and Reports, 6, 1–10.

    Google Scholar 

  • Duan, W., Yuan, J., Duan, X., & Feng, D. (2021). Seasonal variation of tropical cyclone genesis and the related large-scale environments: Comparison between the Bay of Bengal and Arabian Sea Sub-Basins. Atmosphere, 12, 1593.

    Article  Google Scholar 

  • Dube, S. K., Jain, I., Rao, A. D., & Murty, T. S. (2009). Storm surge modelling for the Bay of Bengal and Arabian Sea. Natural Hazards, 51, 3–27.

    Article  Google Scholar 

  • Dube, S. K., Jain, I., Rao, A. D., & Sinha, P. C. (1993). Mean monthly wind driven climatological circulation model of the Bay of Bengal. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 102(1), 185–202.

    Google Scholar 

  • Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.

    Article  Google Scholar 

  • Emanuel, K. A. (1988). Toward a general theory of hurricanes. American Scientist, 76, 370–379.

    Google Scholar 

  • Fernández, J., Fita, L., García-Díez, M. & Gutiérrez, J. M. (2010). WRF sensitivity simulations on the CORDEX African domain. In: EGU General Assembly Conference Abstracts 12, 9701

  • Frank, W. M., & Young, G. S. (2007). The interannual variability of tropical cyclones. Monthly Weather Review, 135, 3587–3598.

    Article  Google Scholar 

  • Gaertner, M. A., Jacob, D., Gil, V., Domínguez, M., Padorno, E., Sánchez, E., & Castro, M. (2007). Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophysical Research Letters, 34, 14.

    Article  Google Scholar 

  • Girishkumar, M. S., & Ravichandran, M. (2012). The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October—December. Journal of Geophysical Research: Oceans, 117, C2.

    Article  Google Scholar 

  • Girishkumar, M. S., Suprit, K., Vishnu, S., Prakash, V. T., & Ravichandran, M. (2015). The role of ENSO and MJO on rapid intensification of tropical cyclones in the Bay of Bengal during October–December. Theoretical and Applied Climatology, 120, 797–810.

    Article  Google Scholar 

  • Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96, 669–700.

    Article  Google Scholar 

  • Gray, W. M. (1998). The formation of tropical cyclones. Meteorology and Atmospheric Physics, 67, 37–69.

    Article  Google Scholar 

  • Hendon, H. H., Lim, E., Wang, G., Alves, O., & Hudson, D. (2009). Prospects for predicting two flavors of El Niño. Geophysical Research Letters, 36, 19.

    Article  Google Scholar 

  • Hodges, K., Cobb, A., & Vidale, P. L. (2017). How well are tropical cyclones represented in reanalysis datasets? Journal of Climate, 30, 5243–5264.

    Article  Google Scholar 

  • India Meteorological Department Forecasters’ Guide 2008 (India Meteorological Department, pp. 92).

  • Islam, T., & Peterson, R. E. (2009). Climatology of landfalling tropical cyclones in Bangladesh 1877–2003. Natural Hazards, 48, 115–135.

    Article  Google Scholar 

  • Jacob, D., Elizalde, A., Haensler, A., Hagemann, S., Kumar, P., Podzun, R., Rechid, D., Remedio, A. R., Saeed, F., Sieck, K., & Teichmann, C. (2012). Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere (basel), 3, 181–199.

    Article  Google Scholar 

  • Jacob, D., & Podzun, R. (1997). Sensitivity studies with the regional climate model REMO. Meteorology and Atmospheric Physics, 63, 119–129.

    Article  Google Scholar 

  • Jana, S., Gangopadhyay, A., Lermusiaux, P. F., Chakraborty, A., Sil, S., & Haley, P. J., Jr. (2018). Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions. Journal of Marine Systems, 187, 206–222.

    Article  Google Scholar 

  • Jayanthi, S. (1997). An objective analysis of tropical cyclones of the North Indian Ocean with special reference to track prediction capabilities over the Bay of Bengal and the Arabian Sea (University of Madras).

  • Joseph, P. V. (1995). Changes in the frequency and tracks of tropical cyclones in the Indian seas. In: SASCOM Meeting on Tropical Cyclones, Dhaka, pp. 18–21.

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., & Zhu, Y. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–472.

    Article  Google Scholar 

  • Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., & Potter, G. L. (2002). NCEP-DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, 83, 1631–1644.

    Article  Google Scholar 

  • Khouakhi, A., & Villarini, G. (2017). Attribution of annual maximum sea levels to tropical cyclones at the global scale. International Journal of Climatology, 37, 540–547.

    Article  Google Scholar 

  • Kim, H.-S., Vecchi, G. A., Knutson, T. R., Anderson, W. G., Delworth, T. L., Rosati, A., Zeng, F., & Zhao, M. (2014). Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. Journal of Climate, 27, 8034–8054.

    Article  Google Scholar 

  • Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., & van den Dool, H. (2001). The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82, 247–268.

    Article  Google Scholar 

  • Klein, S. A., Soden, B. J., & Lau, N. C. (1999). Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12, 917–932.

    Article  Google Scholar 

  • Knutson, T. R., Sirutis, J. J., Vecchi, G. A., Garner, S., Zhao, M., Kim, H. S., Bender, M., Tuleya, R. E., Held, I. M., & Villarini, G. (2013). Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. Journal of Climate, 26(17), 6591–6617.

    Article  Google Scholar 

  • Krishna Kumar, K., Mishra, P. K., Patwardhan, S. K., Revadekar, J. V. & Rupa Kumar, K. (2005). Impact of global warming on the cyclonic storms in the Bay of Bengal and the Arabian Sea. Predict Meteorol. Events Math. Approach, pp. 114–125

  • Kumar, P., Sarthi, P. P., Kumar, S., Barat, A., & Sinha, A. K. (2020). Evaluation of CORDEX-RCMS and their driving GCMs of CMIP5 in simulation of Indian summer monsoon rainfall and its future projections. Arabian Journal of Geosciences, 13, 1–14.

    Article  Google Scholar 

  • Kumar, P., Sein, D., Koldunov, N., Hodges, K., Haensler, A. & Daniela, J. (2015). Past, present and future of Tropical Cyclone climatology over CORDEX South-Asia domain: A coupled regional climate model study. In: AGU Fall Meeting Abstracts A51P, 0311.

  • Kumar, V. S., & Philip, S. C. (2010). Variations in long term wind speed during different decades in Arabian Sea and Bay of Bengal. Journal of Earth System Science, 119(5), 639–653.

    Article  Google Scholar 

  • Landman, W. A., Seth, A., & Camargo, S. J. (2005). The effect of regional climate model domain choice on the simulation of tropical cyclone–like vortices in the southwestern Indian Ocean. Journal of Climate, 18(8), 1263–1274.

    Article  Google Scholar 

  • Lee, C. S., Edson, R., & Gray, W. M. (1989). Some large-scale characteristics associated with tropical cyclone development in the North Indian Ocean during FGGE. Monthly Weather Review, 117(2), 407–426.

    Article  Google Scholar 

  • Lee, M., Cha, D. H., Suh, M. S., Chang, E. C., Ahn, J. B., Min, S. K., & Byun, Y. H. (2020). Comparison of tropical cyclone activities over the western North Pacific in CORDEX-East Asia phase I and II experiments. Journal of Climate, 33(24), 10593–10607.

    Article  Google Scholar 

  • Li, Z., Yu, W., Li, T., Murty, V. S. N., & Tangang, F. (2013). Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. Journal of Climate, 26, 1033–1046.

    Article  Google Scholar 

  • Lin, I., Liu, W. T., Wu, C. C., Wong, G. T., Hu, C., Chen, Z., Liang, W. D., Yang, Y., & Liu, K. K. (2003). New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters, 30, 13.

    Article  Google Scholar 

  • Lionello, P., Dalan, F., & Elvini, E. (2002). Cyclones in the Mediterranean region: The present and the doubled CO2 climate scenarios. Climate Research, 22, 147–159.

    Article  Google Scholar 

  • Lubna, K., Kobra, K., Saifullah, A. S. M., Mallik, M. A. K., Hassan, S. M. Q., Uddin, M. J., Diganta, M. T. M., & Muktadir, M. G. (2017). Spatio-temporal analysis of sea surface temperature in the Bay of Bengal. Atmosphere, 7, 98–103.

    Google Scholar 

  • Magee, A. D., & Verdon-Kidd, D. C. (2018). On the relationship between Indian Ocean sea surface temperature variability and tropical cyclogenesis in the southwest Pacific. International Journal of Climatology, 38, e774–e795.

    Article  Google Scholar 

  • Mahala, B. K., Nayak, B. K., & Mohanty, P. K. (2015). Impacts of ENSO and IOD on tropical cyclone activity in the Bay of Bengal. Natural Hazards, 75, 1105–1125.

    Article  Google Scholar 

  • Malkus, J. S., & Riehl, H. (1960). On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1–20.

    Article  Google Scholar 

  • Manabe, S., Holloway, J. L., & Stone, H. M. (1970). Tropical circulation in a time-integration of a global model of the atmosphere. Journal of Atmospheric Science, 27, 580–613.

    Article  Google Scholar 

  • Mandke, S., & Bhide, U. V. (2003). A study of decreasing storm frequency over Bay of Bengal. Journal of Indian Geophysical Union, 7, 53–58.

    Google Scholar 

  • Manganello, J. V., Hodges, K. I., Dirmeyer, B., Kinter, J. L., Cash, B. A., Marx, L., Jung, T., Achuthavarier, D., Adams, J. M., Altshuler, E. L., Huang, B., Jin, E. K., Towers, P., & Wedi, N. (2014). Future changes in the western North Pacific tropical cyclone activity projected by a multidecadal simulation with a 16-km global atmospheric GCM. Journal of Climate, 27, 7622–7646.

    Article  Google Scholar 

  • McBride, J. L. (1995). Tropical cyclone formation. Global Perspectives of Tropical Cyclones, 693, 63–105.

    Google Scholar 

  • McPhaden, M. J., Foltz, G. R., Lee, T., Murty, V. S. N., Ravichandran, M., Vecchi, G. A., Vialard, J., Wiggert, J. D., & Yu, L. (2009). Ocean-atmosphere interactions during cyclone Nargis. EOS Transactions. American Geophysical Union, 90, 53–54.

    Article  Google Scholar 

  • Meyers, G., McIntosh, P., Pigot, L., & Pook, M. (2007). The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. Journal of Climate, 20, 2872–2880.

    Article  Google Scholar 

  • Mishra, D. K., & Gupta, G. R. (1976). Estimation of maximum wind speeds in tropical cyclones occurring in Indian Seas. Mausam, 27, 285–290.

    Article  Google Scholar 

  • Mishra, S. P., Sethi, K. C., Mishra, D. P., & Siddique, M. (2019). Pre-monsoon cyclogenesis over Bay of Bengal. International Journal of Recent Technology and Engineering, 8, 4895–4908.

    Google Scholar 

  • Mohanty, U. C. (1994). Tropical cyclones in the Bay of Bengal and deterministic methods for prediction of their trajectories. Sadhana, 19, 567–582.

    Article  Google Scholar 

  • Mohanty, U. C., Osuri, K. K., Routray, A., Mohapatra, M., & Pattanayak, S. (2010). Simulation of Bay of Bengal tropical cyclones with WRF model: Impact of initial and boundary conditions. Marine Geodesy, 33, 294–314.

    Article  Google Scholar 

  • Mohapatra, M., Bandyopadhyay, B. K., & Tyagi, A. (2012). Best track parameters of tropical cyclones over the North Indian Ocean: A review. Natural Hazards, 63, 1285–1317.

    Article  Google Scholar 

  • Muni Krishna, K. (2009). Intensifying tropical cyclones over the North Indian Ocean during summer monsoon—Global warming. Global and Planetary Change, 65, 12–16.

    Article  Google Scholar 

  • Murakami, H. (2014). Tropical cyclones in reanalysis data sets. Geophysical Research Letters, 41, 2133–2141.

    Article  Google Scholar 

  • Muskulus, M., & Jacob, D. (2005). Tracking cyclones in regional model data: The future of Mediterranean storms. Advances in Geosciences, 2, 13–19.

    Article  Google Scholar 

  • Nair, S. S., Gupta, A. K., & Röder, K. (2013). Databases and statistics for disaster risk management. National Institute of Disaster Management.

    Google Scholar 

  • Needham, H. F., Keim, B. D., & Sathiaraj, D. (2015). A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Reviews of Geophysics, 53, 545–591.

    Article  Google Scholar 

  • Neetu, S., Lengaigne, M., Vialard, J., Samson, G., Masson, S., Krishnamohan, K. S., & Suresh, I. (2019). Premonsoon/postmonsoon Bay of Bengal tropical cyclones intensity: Role of air-sea coupling and large-scale background state. Geophysical Research Letters, 46, 2149–2157.

    Article  Google Scholar 

  • Osuri, K. K., Mohanty, U. C., Routray, A., & Mohapatra, M. (2012). The impact of satellite-derived wind data assimilation on track, intensity and structure of tropical cyclones over the North Indian Ocean. International Journal of Remote Sensing, 33, 1627–1652.

    Article  Google Scholar 

  • Patoux, J., Yuan, X., & Li, C. (2009). Satellite-based midlatitude cyclone statistics over the Southern Ocean: 1. Scatterometer-derived pressure fields and storm tracking. Journal of Geophysical Research: Atmospheres, 114, D4.

    Article  Google Scholar 

  • Patwardhan, S., Kulkarni, A., & Kumar, K. K. (2012). Impact of global warming on cyclonic disturbances over south Asian region. Journal of Earth System Science, 121, 203–210.

    Article  Google Scholar 

  • Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Mouton, F., & Nordbeck, O. (2012). Global trends in tropical cyclone risk. Nature Clinical Practice Endocrinology and Metabolism, 2, 289–294.

    Google Scholar 

  • Peter Sheng, Y., Paramygin, V. A., Yang, K., & Rivera-Nieves, A. A. (2022). A sensitivity study of rising compound coastal inundation over large flood plains in a changing climate. Scientific Reports, 12(1), 1–14.

    Article  Google Scholar 

  • Raghavan, S., & Rajesh, S. (2003). Trends in tropical cyclone impact: A study in Andhra Pradesh, India. Bulletin of the American Meteorological Society, 84, 635–644.

    Article  Google Scholar 

  • Raj, Y. E. A. (2010). Relation between pressure defect and maximum wind in the field of a tropical cyclone—Theoretical derivation of proportionality constant based on an idealised surface pressure model. Mausam, 61, 291–316.

    Article  Google Scholar 

  • Ramsay, H. A., Richman, M. B., & Leslie, L. M. (2017). The modulating influence of Indian Ocean sea surface temperatures on Australian region seasonal tropical cyclone counts. Journal of Climate, 30, 4843–4856.

    Article  Google Scholar 

  • Rao, A. D., Dash, S., Babu, S. V., & Jain, I. (2007). Numerical modeling of cyclone’s impact on the ocean—A case study of the Orissa super cyclone. Journal of Coastal Research, 23, 1245–1250.

    Article  Google Scholar 

  • Rao, Y. R. (2002). The Bay of Bengal and tropical cyclones. Current Science, 82, 379–381.

    Google Scholar 

  • Raper, S. C. B. (1993). Observational data on the relationships between climatic change and the frequency and magnitude of severe tropical storms. Climate and Sea Level Change: Observations, Projections, Implications, 192, 212.

    Google Scholar 

  • Reale, M., & Lionello, P. (2013). Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Natural Hazards and Earth System Sciences, 13, 1707–1722.

    Article  Google Scholar 

  • Reboita, M. S., Reale, M., da Rocha, R. P., Giorgi, F., Giuliani, G., Coppola, E., Nino, R. B. L., Llopart, M., Torres, J. A., & Cavazos, T. (2021). Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Climate Dynamics, 57, 1533–1549.

    Article  Google Scholar 

  • Remedio, A. R. C., Sein, D., Hodges, K., Koldunov, N. & Daniela, J. (2015). Influence of ocean and atmosphere coupling in a regional climate simulation: Case study on typhoons over the CORDEX Southeast Asia domain. In: AGU Fall Meeting Abstracts A31K, 07.

  • Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13), 1609–1625.

    Article  Google Scholar 

  • Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vannière, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., & Caron, L. P. (2020). Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble. Geophysical Research Letters, 47(14), e2020GL088662.

    Article  Google Scholar 

  • Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Giorgetta, M. A., Schlese, U. & Schulzweida, U. (1996). The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate.

  • Sabin, T. P., Babu, C. A., & Joseph, P. V. (2013). SST–convection relation over tropical oceans. International Journal of Climatology, 33, 1424–1435.

    Article  Google Scholar 

  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Article  Google Scholar 

  • Saji, N. H., & Yamagata, T. (2003). Possible impacts of Indian Ocean dipole mode events on global climate. Climate Research, 25, 151–169.

    Article  Google Scholar 

  • Sarthi, P. P., Agrawal, A., & Rana, A. (2015). Possible future changes in cyclonic storms in the Bay of Bengal, India under warmer climate. International Journal of Climatology, 35, 1267–1277.

    Article  Google Scholar 

  • Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto, J. G., Hagemann, S., Semmler, T., Izquierdo, A., & Jacob, D. (2015). Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation. Journal of Advances in Modeling Earth Systems, 7, 268–304.

    Article  Google Scholar 

  • Shaevitz, D. A., Camargo, S. J., Sobel, A. H., Jonas, J. A., Kim, D., Kumar, A., LaRow, T. E., Lim, Y. K., Murakami, H., Reed, K. A., & Roberts, M. J. (2014). Characteristics of tropical cyclones in high-resolution models in the present climate. Journal of Advances in Modeling Earth Systems, 6, 1154–1172.

    Article  Google Scholar 

  • Sikka, D. R. (2006). Major advances in understanding and prediction of tropical cyclones over north Indian Ocean: A perspective. Mausam, 57, 165–196.

    Article  Google Scholar 

  • Sikka, D. R., & Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Monthly Weather Review, 108, 1840–1853.

    Article  Google Scholar 

  • Simmonds, I., & Keay, K. (2002). Surface fluxes of momentum and mechanical energy over the North Pacific and North Atlantic Oceans. Meteorology and Atmospheric Physics, 80, 1–18.

    Article  Google Scholar 

  • Singh, A., Delcroix, T., & Cravatte, S. (2011). Contrasting the flavors of El Niño-Southern Oscillation using sea surface salinity observations. Journal of Geophysical Research: Oceans, 116, C6.

    Article  Google Scholar 

  • Singh, O. P. (2001). Long term trends in the frequency of monsoonal cyclonic disturbances over the North Indian Ocean. Mausam, 52, 655–658.

    Article  Google Scholar 

  • Singh, O. P., Ali Khan, T. M., & Rahman, M. S. (2000). Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorology and Atmospheric Physics, 75, 11–20.

    Article  Google Scholar 

  • Singh, O. P., & Khan, T. M. A. (1999). Changes in the frequencies of cyclonic storms and depressions over the Bay of Bengal and the Arabian Sea. SAARC Meteorological Research Centre, SMRC.

    Google Scholar 

  • Singh, O. P., Khan, T. M. A., & Rahman, M. S. (2001). Has the frequency of intense tropical cyclones increased in the north Indian Ocean? Current Science, 80, 575–580.

    Google Scholar 

  • Singh, S., Ghosh, S., Sahana, A. S., Vittal, H., & Karmakar, S. (2017). Do dynamic regional models add value to the global model projections of Indian monsoon? Climate Dynamics, 48(3), 1375–1397.

    Article  Google Scholar 

  • Sreenath, A. V., Abhilash, S., & Vijaykumar, P. (2021). Variability in lightning hazard over Indian region with respect to El Niño-Southern Oscillation (ENSO) phases. Natural Hazards and Earth System Sciences, 21, 2597–2609.

    Article  Google Scholar 

  • Srivastava, A. K., Ray, K. C. S., & De, U. S. (2000). Trends in the frequency of cyclonic disturbances and their intensification over Indian seas. Mausam, 51, 113–118.

    Article  Google Scholar 

  • Stephenson, D. B., Hannachi, A., & O’Neill, A. (2003). On the existence of multiple climate regimes. Quarterly Journal of the Royal Meteorological Society, 130, 583–606.

    Article  Google Scholar 

  • Sumesh, K. G., & Kumar, M. R. R. (2013). Tropical cyclones over north Indian Ocean during El-Nino Modoki years. Natural Hazards, 68, 1057–1074.

    Article  Google Scholar 

  • Takle, E. S., Roads, J., Rockel, B., Gutowski, W. J., Jr., Arritt, R. W., Meinke, I., Jones, C. G., & Zadra, A. (2007). Transferability intercomparison: An opportunity for new insight on the global water cycle and energy budget. Bulletin of the American Meteorological Society, 88(3), 375–384.

    Article  Google Scholar 

  • Tasnim, K. M., Shibayama, T., Esteban, M., Takagi, H., Ohira, K., & Nakamura, R. (2015). Field observation and numerical simulation of past and future storm surges in the Bay of Bengal: Case study of cyclone Nargis. Natural Hazards, 75, 1619–1647.

    Article  Google Scholar 

  • Torres-Alavez, J. A., Glazer, R., Giorgi, F., Coppola, E., Gao, X., Hodges, K. I., Das, S., Ashfaq, M., Reale, M., & Sines, T. (2021). Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations. Climate Dynamics. https://doi.org/10.1007/s00382-021-05728-6

    Article  Google Scholar 

  • Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., & Li, X. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961–3012.

    Article  Google Scholar 

  • Vishnu, S., Sanjay, J., & Krishnan, R. (2019). Assessment of climatological tropical cyclone activity over the north Indian Ocean in the CORDEX-South Asia regional climate models. Climate Dynamics, 53, 5101–5118.

    Article  Google Scholar 

  • Vissa, N. K., Satyanarayana, A. N. V., & Kumar, B. P. (2013). Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Science Journal, 48, 279–288.

    Article  Google Scholar 

  • Waliser, D. E., & Gautier, C. (1993). A satellite-derived climatology of the ITCZ. Journal of Climate, 6, 2162–2174.

    Article  Google Scholar 

  • Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., & Takata, K. (2010). Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. Journal of Climate, 23, 6312–6335.

    Article  Google Scholar 

  • Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H.-R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846.

    Article  Google Scholar 

  • Wehner, M. F., Bala, G., & Duffy, P. (2010). Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model. Advances in Meteorology, 2010, 915303.

    Article  Google Scholar 

  • Wernli, H., & Schwierz, C. (2006). Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. Journal of Atmospheric Science, 63, 2486–2507.

    Article  Google Scholar 

  • Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation of model performance. Journal of Geophysical Research, 90, 8995–9005.

    Article  Google Scholar 

  • Zhang, C. (1993). Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. Journal of Climate, 6(10), 1898–1913.

    Article  Google Scholar 

  • Zhou, X., Liu, Z., Yan, Q., Zhang, X., Yi, L., Yang, W., Xiang, R., He, Y., Hu, B., Liu, Y., & Shen, Y. (2019). Enhanced tropical cyclone intensity in the western North Pacific during warm periods over the last two millennia. Geophysical Research Letters, 46, 9145–9153.

    Article  Google Scholar 

Download references

Acknowledgements

India Meteorological Department (IMD), India; European Centre for Medium Range Weather Forecasting (ECMWF); Indian Institute of Tropical Meteorology, Pune; and Met Office Hadley Centre, UK, are duly acknowledged for the data. The Department of Science and Technology, Government of India, is acknowledged for the grant.

Funding

The work is an outcome of the research project supported by the Department of Science and Technology (DST), Government of India (Letter No: DST/CCP/NCM/70/2017(G)).

Author information

Authors and Affiliations

Authors

Contributions

PPS conceptualised the idea for this research. AKS performed the analysis and drafted the manuscript as part of the PhD research. PK provided suggestions and assisted in result writing. PPS proof read the research paper.

Corresponding author

Correspondence to P. Parth Sarthi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethics approval

The authors confirm that this research is original and has not been published in any journal (in whole or in part). This research is part of the ongoing PhD research by the first author.

Consent for publication

Authors have consented to publish this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 623 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A.K., Sarthi, P.P. & Kumar, P. Revisiting the Precursors of Cyclonic Systems in the CORDEX RCM REMO2009 Simulations. Pure Appl. Geophys. 180, 277–312 (2023). https://doi.org/10.1007/s00024-022-03202-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03202-w

Keywords

Navigation