Skip to main content
Log in

Local Tsunami Amplification Factors due to the Bathymetric Effect and its Application to Approximate Hazard Assessment on the Zihuatanejo Coast

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study estimated tsunami amplification factors due to the bathymetric effect independent of the direction of the tsunami source on the Zihuatanejo coast, Mexico. First, a total of 200 slip distributions of earthquakes (\(M\!\mathrm {_w}\) 8.4) in the Mexican subduction zone were generated using a stochastic source model. Subsequently, the relationship between the initial tsunami distribution in the source zone and tsunami amplitude at the coastal locations was analyzed via numerical simulations based on these 200 tsunami scenarios. Detailed numerical simulations were performed using high-resolution (up to 5 m) bathymetry data for coastal areas. The initial tsunami sources were considered a finite set of unit waves in the regression analysis, and the representative parameters of the initial tsunami were defined by the superposition of the unit waves. Regression analysis results showed that the representative parameters adequately explained the maximum tsunami amplitude around the target area. As the initial tsunami distribution is independently represented, the regression coefficients can be regarded as tsunami amplification factors owing to the bathymetric effect on each coastal location. Additionally, a simplified prediction model was developed for the maximum tsunami amplitude by using the amplification factors and comparing them with the numerical model. The prediction model was statistically consistent with the numerical results in the target area despite ignoring detailed bay geometry and nonlinear amplification. This amplification factor is unsuitable to predict tsunamis for individual events, but is useful for approximate mapping of stochastic tsunami hazard/risk around nearshore areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Baba, T., Takahashi, N., Kaneda, Y., Ando, K., Matsuoka, D., & Kato, T. (2015). Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku Tsunami. Pure & Applied Geophysics, 172(12), 3455–3472.

    Article  Google Scholar 

  • Bird, P. (2003). “An updated digital model of plate boundaries.” Geochemistry, Geophysics, Geosystems, 4(3).

  • Carrier, G., & Greenspan, H. (1958). Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics, 4(1), 97–109.

    Article  Google Scholar 

  • Carrier, G. F., Wu, T. T., & Yeh, H. (2003). Tsunami run-up and draw-down on a plane beach. Journal of Fluid Mechanics, 475, 79–99.

    Article  Google Scholar 

  • Carrier, G. F., & Yeh, H. (2005). Tsunami propagation from a finite source. Computer Modeling in Engineering & Sciences, 10(2), 113–121.

    Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophysical Research Letters, 21(20), 2191–2194.

    Article  Google Scholar 

  • Fujii, Y., & Satake, K. (2007). Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data. Bulletin of the Seismological Society of America, 97(1A), S192–S207.

    Article  Google Scholar 

  • Gailler, A., Hébert, H., Schindelé, F., & Reymond, D. (2018). Coastal amplification laws for the French tsunami warning center: Numerical modeling and fast estimate of tsunami wave heights along the French Riviera. Pure & Applied Geophysics, 175(4), 1429–1444.

    Article  Google Scholar 

  • General Bathymetric Chart of Oceans (GEBCO) Dataset. (2019). “Gridded Bathymetry Data (General Bathymetric Chart of the Oceans) GEBCO Dataset, \(<\)https://www.gebco.net/\(>\).

  • Glimsdal, S., Løvholt, F., Harbitz, C. B., Romano, F., Lorito, S., Orefice, S., Brizuela, B., Selva, J., Hoechner, A., Volpe, M., Babeyko, A., Tonini, R., Wronna, M., & Omira, R. (2019). “A New Approximate Method for Quantifying Tsunami Maximum Inundation Height Probability.” Pure and Applied Geophysics.

  • Goda, K., Yasuda, T., Mori, N., & Maruyama, T. (2016). “New scaling relationships of earthquake source parameters for stochastic tsunami simulation.” Coastal Engineering Journal, 58(3), 1650010–1–1650010–40.

  • Gonzalez, F. I., Satake, K., Boss, E. F., & Mofjeld, H. O. (1995). Edge wave and non-trapped modes of the 25 April 1992 Cape Mendocino tsunami. Pure & Applied Geophysics, 144(3–4), 409–426.

    Article  Google Scholar 

  • Gusman, A. R., Mulia, I. E., & Satake, K. (2018). Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec Earthquake Mw 8.2 in Mexico estimated from tsunami waveforms. Geophysical Research Letters, 45(2), 646–653.

    Article  Google Scholar 

  • Hayashi, Y. (2010). Empirical relationship of tsunami height between offshore and coastal stations. Earth, Planets & Space, 62(3), 269–275.

    Article  Google Scholar 

  • Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61.

    Article  Google Scholar 

  • Hébert, H., & Schindelé, F. (2015). Tsunami impact computed from offshore modeling and coastal amplification laws: Insights from the 2004 Indian Ocean Tsunami. Pure & Applied Geophysics, 172(12), 3385–3407.

    Article  Google Scholar 

  • Heidarzadeh, M., & Satake, K. (2014). Excitation of basin-wide modes of the Pacific Ocean following the March 2011 Tohoku tsunami. Pure & Applied Geophysics, 171(12), 3405–3419.

    Article  Google Scholar 

  • Hyndman, R. D., & Wang, K. (1995). The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime. Journal of Geophysical Research: Solid Earth, 100(B11), 22133–22154.

    Article  Google Scholar 

  • Jiménez, C. (2018). “Seismic source characteristics of the intraslab 2017 Chiapas-Mexico earthquake (Mw8.2).” Physics of the Earth and Planetary Interiors, 280(November 2017), 69–75.

  • Kajiura, K. (1970). Tsunami source, energy and the directivity of wave radiation. Bulletin of the Earthquake Research Institute, 48(5), 835–869.

    Google Scholar 

  • Kostoglodov, V., Singh, S. K., Santiago, J. A., Franco, S. I., Larson, K. M., Lowry, A. R., & Bilham, R. (2003). A large silent earthquake in the Guerrero seismic gap, Mexico. Geophysical Research Letters, 30(15), 1–4.

    Article  Google Scholar 

  • Madsen, P. A., Fuhrman, D. R., & Schäffer, H. A. (2008). “On the solitary wave paradigm for tsunamis.” Journal of Geophysical Research: Oceans, 113(C12).

  • Mai, P. M., & Thingbaijam, K. K. S. (2014). SRCMOD: An online database of finite fault rupture models. Seismological Research Letters, 85(6), 1348–1357.

    Article  Google Scholar 

  • Mendoza, C., & Hartzell, S. (1999). Fault-slip distribution of the 1995 Colima-Jalisco, Mexico, earthquake. Bulletin of the Seismological Society of America, 89(5), 1338–1344.

    Article  Google Scholar 

  • Miyashita, T., & Mori, N. (2019). “Estimation of maximum tsunami amplitudes at coastal zone using local amplification factors (in Japanese).” Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 75(2), I_367–I_372.

  • Miyashita, T., Mori, N., & Goda, K. (2020). Uncertainty of probabilistic tsunami hazard assessment of Zihuatanejo (Mexico) due to the representation of tsunami variability. Coastal Engineering Journal, 62(3), 1–16.

    Article  Google Scholar 

  • Mori, N., Muhammad, A., Goda, K., Yasuda, T., & Ruiz-Angulo, A. (2017). Probabilistic tsunami hazard analysis of the Pacific coast of Mexico: Case study based on the 1995 Colima Earthquake tsunami. Frontiers in Built Environment, 3, 34.

    Article  Google Scholar 

  • Murotani, S., Satake, K., & Fujii, Y. (2013). “Scaling relations of seismic moment, rupture area, average slip, and asperity size for \(\text{M}^{\sim }\) 9 subduction-zone earthquakes.” Geophysical Research Letters, 40(19), 5070–5074.

  • Nakano, G., Yamori, K., Miyashita, T., Urra, L., Mas, E., & Koshimura, S. (2020). Combination of school evacuation drill with tsunami inundation simulation: Consensus-making between disaster experts and citizens on an evacuation strategy. International Journal of Disaster Risk Reduction, 51(101803), 1–11.

    Google Scholar 

  • National Institute of Statistics, Geography and Informatics (INEGI), Mexico (2016). “Socio-demographic panorama of Guerrero. Panorama sociodemografico de Guerrero 2015 (In Spanish), \(<\)http://internet.contenidos.inegi.org.mx/contenidos/Productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/inter_censal/panorama/702825082208.pdf\(>\).

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Article  Google Scholar 

  • Okuwaki, R., & Yagi, Y. (2017). Rupture process during the Mw 8.1 2017 Chiapas Mexico Earthquake: Shallow intraplate normal faulting by slab bending. Geophysical Research Letters, 44(23), 11816–11823.

    Article  Google Scholar 

  • Pacheco, J. F., & Singh, S. K. (2010). Seismicity and state of stress in Guerrero segment of the Mexican subduction zone. Journal of Geophysical Research: Solid Earth, 115(1), 1–14.

    Google Scholar 

  • Pérez-Campos, X., Kim, Y. H., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., et al. (2008). Horizontal subduction and truncation of the Cocos plate beneath central Mexico. Geophysical Research Letters, 35(18), 1–6.

    Article  Google Scholar 

  • Rabinovich, A. B. (1997). Spectral analysis of tsunami waves: Separation of source and topography effects. Journal of Geophysical Research: Oceans, 102(C6), 12663–12676.

    Article  Google Scholar 

  • Ramírez-Herrera, M. T., Corona, N., Ruiz-Angulo, A., Melgar, D., & Zavala-Hidalgo, J. (2018). The 8 September 2017 tsunami triggered by the Mw 8.2 intraplate earthquake, Chiapas, Mexico. Pure & Applied Geophysics, 175(1), 25–34.

    Article  Google Scholar 

  • Ren, Z., Ji, X., Wang, P., Hou, J., Shan, D., & Zhao, L. (2018). Source inversion and numerical simulation of 2017 Mw 8.1 Mexico earthquake tsunami. Natural Hazards, 94(3), 1163–1185.

    Article  Google Scholar 

  • Reymond, D., Okal, E. A., Hébert, H., & Bourdet, M. (2012). Rapid forecast of tsunami wave heights from a database of pre-computed simulations, and application during the 2011 Tohoku tsunami in French Polynesia. Geophysical Research Letters, 39(11), 1–6.

    Article  Google Scholar 

  • Saito, T., & Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877–888.

    Article  Google Scholar 

  • Salazar-Monroy, E. F., Melgar, D., Jaimes, M. A., & Ramirez-Guzman, L. (2021). Regional probabilistic tsunami hazard analysis for the Mexican Subduction Zone from stochastic slip models. Journal of Geophysical Research: Solid Earth, 126(6), 1–18.

    Google Scholar 

  • Sandanbata, O., Watada, S., Satake, K., Fukao, Y., Sugioka, H., Ito, A., & Shiobara, H. (2018). Ray tracing for dispersive tsunamis and source amplitude estimation based on green’s law: Application to the 2015 volcanic tsunami earthquake near torishima, south of japan. Pure and Applied Geophysics,175(4), 1371–1385.

  • Satake, K. (1987). Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments. Journal of Physics of the Earth, 35(3), 241–254.

    Article  Google Scholar 

  • Singh, S. K., & Mortera, F. (1991). Source time functions of large Mexican subduction earthquakes, morphology of the Benioff Zone, age of the plate, and their tectonic implications. Journal of Geophysical Research: Solid Earth, 96(B13), 21487–21502.

    Article  Google Scholar 

  • Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523–545.

    Article  Google Scholar 

  • Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23(8), 861–864.

    Article  Google Scholar 

  • Vazquez, L., Medina, M., Riquelme, S., & Melgar, D. (2021). Numerical simulation of tsunami coastal amplitudes in the Pacific Coast of Mexico based on non-uniform \(k^{-2}\) slip distributions. Pure & Applied Geophysics, 178(9), 3291–3312.

    Article  Google Scholar 

  • Wang, Y., Satake, K., Maeda, T., & Gusman, A. R. (2017). Green’s function-based tsunami data assimilation: A fast data assimilation approach toward tsunami early warning. Geophysical Research Letters,44(20), 10282–10289.

  • Yamanaka, Y., Sato, S., Shimozono, T., & Tajima, Y. (2019). A numerical study on nearshore behavior of Japan Sea tsunamis using Green’s functions for Gaussian sources based on linear Boussinesq theory. Coastal Engineering Journal,61(2), 187–198.

  • Ye, L., Lay, T., Bai, Y., Cheung, K. F., & Kanamori, H. (2017). The 2017 Mw 8.2 Chiapas, Mexico, Earthquake: Energetic slab detachment. Geophysical Research Letters, 44(23), 11824–11832.

    Article  Google Scholar 

  • Zaytsev, O., Rabinovich, A. B., & Thomson, R. E. (2021). “The impact of the Chiapas Tsunami of 8 September 2017 on the Coast of Mexico. part 1: Observations, statistics, and energy partitioning.” Pure and Applied Geophysics.

  • Zaytsev, O., Rabinovich, A. B., & Thomson, R. E. (2016). A comparative analysis of coastal and open-ocean records of the Great Chilean Tsunamis of 2010, 2014 and 2015 off the Coast of Mexico. Pure & Applied Geophysics, 173(12), 4139–4178.

    Article  Google Scholar 

  • Zúñiga, F. R., Suárez, G., Figueroa-Soto, Á., & Mendoza, A. (2017). A first-order seismotectonic regionalization of Mexico for seismic hazard and risk estimation. Journal of Seismology, 21(6), 1295–1322.

    Article  Google Scholar 

Download references

Acknowledgements

The background map of the figure indicating the fault zone of Mexico is based on the Nature Earth (https://www.naturalearthdata.com/) public domain map dataset. Datasets of ASTER Global Digital Elevation Model Version 2 (GDEM2; https://asterweb.jpl.nasa.gov) and Shuttle Radar Topography Mission (SRTM; https://lta.cr.usgs.gov) were used for verification of the bathymetry and topography data. The authors acknowledge the Mexican Secretary of the Navy for providing the bathymetry measurement data near Zihuatanejo Bay, Erika Danae López-Espinoza for his support in the processing of the topography and bathymetry, and the Servicio Mareográfico Nacional for the sea level data of the Chiapas 2017 event. The authors also acknowledge anonymous reviewers for many valuable comments and suggestions.

Funding

This work was supported by Science and Technology Research Partnership for Sustainable Development (SATREPS) with grant number JPMJSA1510, JSPS KAKENHI grant (20K22432), and the Core-to-Core Collaborative Research Program of the Earthquake Research Institute, the University of Tokyo, and the Disaster Prevention Research Institute, Kyoto University (2021-K-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Miyashita.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 4004 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyashita, T., Mori, N. & Gómez-Ramos, O. Local Tsunami Amplification Factors due to the Bathymetric Effect and its Application to Approximate Hazard Assessment on the Zihuatanejo Coast. Pure Appl. Geophys. 179, 4301–4322 (2022). https://doi.org/10.1007/s00024-022-03177-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03177-8

Navigation