Skip to main content
Log in

Rheological Model for a Vertically Fractured Source Rock

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The elastic stress–strain relation of deep source rocks must account for the presence of fractures and lamination due to thermally mature kerogen layers. Clay lamination describes the variation in transverse isotropy with a vertical symmetry (VTI) characteristic of shale background, and vertical fractures induce the transverse isotropy with a horizontal symmetry (HTI) perturbations. Thus, the fractured shale rock can be described as a medium with an orthorhombic symmetry in terms of effective anisotropy. We present a new workflow for calculating the elastic constants of a pressure-dependent fractured shale rock and the effects of clay lamination and microfractures. We investigate the shale fabric that can result in the orthorhombic elastic symmetry and the effect of pressure on elastic parameters, and propose an inversion methodology. Results based on well-log data show that the proposed methodology can be effectively applied to field data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahmadov, R. (2011). Microtextural, elastic and transport properties of sourcerocks: Ph.D. thesis, Stanford University.

  • Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67, 4427–4440.

    Article  Google Scholar 

  • Bakulin, A., Grechka, V., & Tsvankin, I. (2000). Estimation of fracture parameters from reflection seismic data-part I: HTI model due to a single fracture set. Geophysics, 65, 1788–1802.

    Article  Google Scholar 

  • Bakulin, A., Grechka, V., & Tsvankin, I. (2000). Estimation of fracture parameters from reflection seismic data-part II: Fractured models with orthorhombic symmetry. Geophysics, 65, 1803–1817.

    Article  Google Scholar 

  • Bayuk, I. O., Ammerman, M., & Chesnokov, E. M. (2007). Elastic moduli of anisotropic clay. Geophysics, 72(5), D107–D117.

    Article  Google Scholar 

  • Bandyopadhyay, K. (2009). Seismic anisotropy: Geological causes and its implications to reservoir geophysics, PhD Thesis, Stanford University.

  • Bandyopadhyay, K., Sain, R., Liu, E., Harris, C., Martinez, A., Payne, M., & Zhu Y. (2012). Rock property inversion in organic-rich shale: Uncertainties, ambiguities, and pitfalls. The 82nd Annual International Meeting, Society of Exploration Geophysicists. Expanded Abstracts, 1-5.

  • Berryman, J. G. (1980). Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions: The Journal of the Acoustical Society of America, 68(6), 1820–1831.

    Google Scholar 

  • Blanton, T., Olson, J. E. (1999). Stress magnitudes from logs: Effects of tectonic strains and temperature. SPE Reservoir Evaluation & Engineering, 2(1), 62–68.

    Article  Google Scholar 

  • Bond, W. L. (1943). The mathematics of the physical properties of crystals. The Bell System Technical Journal, 22, 1–72.

    Article  Google Scholar 

  • Carcione, J. M. (2000). A model for seismic velocity and attenuation in petroleum source rocks. Geophysics, 65, 1080–1092.

    Article  Google Scholar 

  • Carcione, J. M., Helle, H. B., & Avseth, P. (2011). Source-rock seismic-velocity models: Gassmann versus Backus. Geophysics, 76, N37–N45.

    Article  Google Scholar 

  • Carcione, J., Picotti, S., & Santos, J. E. (2012). Numerical experiments of fracture-induced velocity and attenuation anisotropy. Geophysical Journal International, 191, 1179–1191.

    Google Scholar 

  • Carcione, J. M., Santos, J. E., Picotti, S., & S. (2012). Fracture-induced anisotropic attenuation. Rock Engineering, 45, 929–942.

    Google Scholar 

  • Carcione, J. M., & Picotti, S. (2012). Reflection and transmission coefficients of a fracture in transversely isotropic media. Studia Geophysica et Geodaetica, 56, 307–322.

    Article  Google Scholar 

  • Carcione, J. M., Gurevich, B., Santos, J. E., & Picotti, S. (2013). Angular and frequency-dependent wave velocity and attenuation in fractured porous media. Pure and Applied Geophysics, 170, 1673–1683.

    Article  Google Scholar 

  • Carcione, J. M., & Avseth, P. (2015). Rock-physics templates for clay-rich source rocks. Geophysics, 80, D481–D500.

    Article  Google Scholar 

  • Carcione, J. M., Farina, B., Poletto, F., Qadrouh, A. N., & Cheng, W. (2020). Seismic attenuation in partially molten rocks. Physics of the Earth and Planetary Interiors, 309, 106568.

    Article  Google Scholar 

  • Carcione, J. M., Gei, D., Picotti, S., Qadrouh, A. N., Alajmi, M., & Ba, J. (2021). Rock acoustics of diagenesis and cementation, Rock acoustics of diagenesis and cementation. arXiv preprint arXiv:2111.07743.

  • Carmichael, R. S. (1988). Practical handbook of physical properties of rocks and minerals: CRC Press.

  • Crampin, S. (1984). Effective anisotropic elastic constants for wave propagation through cracked solids. Geophysical Journal International, 76, 135–145.

    Article  Google Scholar 

  • Daley, T. M., Schoenberg, M. A., Rutqvist, J., & Nihei, K. T. (2006). Fractured reservoirs: An analysis of coupled elastodynamic and permeability changes from pore-pressure variation. Geophysics, 71(5), O33–O41.

    Article  Google Scholar 

  • David, E., & Zimmerman, R. W. (2012). Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research: Solid Earth, 117, B07210.

    Article  Google Scholar 

  • Derbyshire, F. (1991). Vitrinite structure: alterations with rank and processing. Fuel, 70, 276–284.

    Article  Google Scholar 

  • Eastwood, R. L., & Castagna, J. P. (1987). Interpretation of Vp/Vs ratios from sonic logs: Shear wave exploration. Geophysical Development Service, 1, 139–153.

    Google Scholar 

  • Gray, David, Anderson, Paul, Logel, John, et al. (2012). Estimation of stress and geomechanical properties using 3D seismic data. First Break, 30(3), 59–68.

    Article  Google Scholar 

  • Guo, Z., Li, X., Liu, C., Feng, X., & Shen, Y. (2013). A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the barnett shale. Journal of Geophysics and Engineering, 10, 025006.

    Article  Google Scholar 

  • Guo, Z., Li, X., & Liu, C. (2014). Anisotropy parameters estimate and rock physics analysis for the barnett shale. Journal of Geophysics and Engineering, 11, 065006.

    Article  Google Scholar 

  • Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65, 349.

  • Hornby, B. E., Schwartz, L. M., & Hudson, J. A. (1994). Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 59, 1570–1583.

    Article  Google Scholar 

  • Hsu, C. J., & Schoenberg, M. (1993). Elastic waves through a simulated fractured medium. Geophysics, 58, 964–977.

    Article  Google Scholar 

  • Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64, 133–150.

    Article  Google Scholar 

  • Hui, Z., Yang, X., Hu, Q. Z., & Cheng, C. B. (2011). Strength test and mechanism of softening of chlorite schist. Soil Engineering and Foundation, 25, 45.

    Google Scholar 

  • Humbert, P., et al. (1972). Proprietés élastiques de carbonates rhomboédriques monocristallins: calcite, magnésite, dolomie: Computes Rendus de l’Academie des Sciences, 275, no. B, 391-394.

  • Luo, X., & Vasseur, G. (1996). Geopressuring mechanism of organic mattercracking: Numerical modeling. AAPG Bulletin, 80, 856–874.

    Google Scholar 

  • Johnston, J. E., & Christensen, N. I. (1995). Seismic anisotropy of shales. Journal of Geophysical Research, 100(B4), 5991–6003.

    Article  Google Scholar 

  • Jones, L. E., & Wang, H. F. (1981). Ultrasonic velocities in Cretaceous shales from the Williston basin. Geophysics, 46(3), 288–297.

    Article  Google Scholar 

  • Li, Yang, Wu, Xiaoyang, & Chapman, Mark. (2015). Impacts of kerogen content and fracture properties on the anisotropic seismic reflectivity of shales with orthorhombic symmetry. Interpretation, 3, (3), ST1-ST7.

  • Mavko, G., Mukerji, T., & Dvorkin, J. (2020). The rock physics handbook. Cambridge University Press.

  • Mukerji, T., Berryman, J., Mavko, G., et al. (1995). Differential effective medium modeling of rock elastic moduli with critical porosity constraints. Geophysical Research Letters, 22(7), 555–558.

    Article  Google Scholar 

  • Oh, J. W., & Alkhalifah, T. (2016). The scattering potential of partial derivative wave-fields in 3-D elastic orthorhombic media: An inversion prospective. Geophysical Journal International, 206, 1740–1760.

    Article  Google Scholar 

  • Pinna, G., Carcione, J. M., & Poletto, F. (2011). Kerogen to oil conversion in source rocks. Pore-pressure build-up and effects on seismic velocities. Journal of Applied Geophysics, 74, 229–235.

    Article  Google Scholar 

  • Qian, K., Zhang, F., Chen, S., Li, X., & Zhang, H. (2016). A rock physics model for analysis of anisotropic parameters in a shale reservoir in southwest china. Journal of Geophysics and Engineering, 13, 19–34.

    Article  Google Scholar 

  • Sayers, C. (2005). Seismic anisotropy of shales. Geophysical Prospecting, 53, 667–676.

    Article  Google Scholar 

  • Sayers, C. M., & den Boer, L. D. (2018). The elastic properties of clay in shales. Journal of Geophysical Research: Solid Earth, 123(7), 5965–5974.

    Article  Google Scholar 

  • Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. The Journal of the Acoustical Society of America, 68, 1516–1521.

    Article  Google Scholar 

  • Schoenberg, M., & Douma, J. (1988). Elastic wave propagation in media with parallel fractures and aligned cracks. Geophysical Prospecting, 36(6), 571–590.

    Article  Google Scholar 

  • Schoenberg, M., & Sayers, C. M. (1995). Seismic anisotropy of fractured rock. Geophysics, 60(1), 204–211.

    Article  Google Scholar 

  • Simmons, G., & Birch, F. (1963). Elastic constants of pyrite. Journal of Applied Physics, 34, 2736–2738.

    Article  Google Scholar 

  • Simmons, G. (1965). Single crystal elastic constants and calculated aggregate properties. Technical report, Southern Methodist Univ Dallas Tex.

  • Tabaeh, H. M., & Mohammad, A. (2016). Estimation of in-situ horizontal stresses using the linear poroelastic model and minifrac test results in tectonically active area. Russian Journal of Earth Sciences, 16(4), 1–9.

    Article  Google Scholar 

  • Tissot, B., Durand, B., Espitalie, J., & Combaz, A. (1974). Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bulletin, 58, 499–506.

    Google Scholar 

  • Vanorio, T., Prasad, M., & Nur, A. (2003). Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophysical Journal International, 155, 319–326.

    Article  Google Scholar 

  • Vernik, L., & Nur, A. (1992). Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57(5), 727–735.

    Article  Google Scholar 

  • Vernik, L., & Landis, C. (1996). Elastic anisotropy of source rocks: Implicationsfor hydrocarbon generation and primary migration. AAPG Bulletin, 80, 531–544.

    Google Scholar 

  • Vernik, L., & Liu, X. (1997). Velocity anisotropy in shales: A petrophysicalstudy: Geophysics, 62, 521–532.

  • Wang, Z., Wang, H., & Cates, M. E. (2001). Effective elastic properties of solid clays: Geophysics, 66, 428–440.

  • Wang, Z. (2002). Seismic anisotropy in sedimentary rocks, part 2: Laboratory data: Geophysics,67, 1423-1440.

  • Willis, J. R. (1977). Bounds and self-consistent estimates for the overall properties of anisotropic composites. Journal of the Mechanics and Physics of Solids, 25(3), 185–202.

    Article  Google Scholar 

  • Xu, S., & White, R. E. (1995). A new velocity model for clay-sand mixtures: Geophysical prospecting, 43(1), 91–118.

  • Xu, S., Saltzer, R. L., & Keys, R. G. (2010). Integrated anisotropic rock physics model. (US Patent 7,676,349).

  • Yan, F., & Han, D. (2013). Measurement of elastic properties of kerogen: 83rd Annual International Meeting (pp. 2778–2782). Expanded Abstracts: SEG.

    Google Scholar 

  • Zhang, F., Li, X., Qian, K. (2017). Estimation of anisotropy parameters for shale based on an improved rock physics model, part 1: theory: Journal of Geophysics and Engineering, 14, 143-158.

  • Zhang, F. (2017). Estimation of anisotropy parameters for shales based on an improved rock physics model, part 2: case study: Journal of Geophysics and Engineering, 14, 238-254.

  • Zhang, L., Ba, J., Fu, L., Carcione, J. M., & Cao, C. (2019). Estimation of pore microstructure by using the static and dynamic moduli. International Journal of Rock Mechanics and Mining Sciences, 113, 24–30.

    Article  Google Scholar 

  • Zhao, L., Qin, X., Han, D., Geng, J., Yang, Z., & Cao, H. (2016). Rock-physics modeling for the elastic properties of organic shale at different maturity stages. Geophysics, 81, D527–D541.

    Article  Google Scholar 

  • Zimmerman, R. W. (1991). Compressibility of sandstones: Elsevier.

  • Zoback, M. D. (2010). Reservoir geomechanics: Cambridge university press.

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 42004111, in part by Jiangsu Innovation and Entrepreneurship Plan, and in part by Jiangsu Province Science Fund for Distinguished Young Scholars (grant no. BK20200021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Ba, J., Carcione, J.M. et al. Rheological Model for a Vertically Fractured Source Rock. Pure Appl. Geophys. 179, 4521–4539 (2022). https://doi.org/10.1007/s00024-022-03156-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03156-z

Keywords

Navigation