Skip to main content
Log in

Trends in Chlorophyll-a Concentration Along the Krishna–Godavari Basin as Observed From MODIS Archives

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Krishna–Godavari basin (KG), located along the southeast coast of India, is a proven rich source of gas hydrates exploration zone. An understanding of surface water conditions in this region is necessary to study the coastal dynamics, and the implications of pollutants to the marine ecological environment. Here, we report the long-term trends and spatio-temporal variability in chlorophyll-a (Chl-a) in the KG basin, and discuss the dynamics of Chl-a patterns from 2002 to 2021. Monthly Chl-a averages from the Medium Resolution Imaging Spectroradiometer (MODIS) were used for the analysis of trends and seasonal distributions by linear regression fitting. Our results revealed a downward trend in Chl-a concentrations, with a value of −0.000003 mg/m3 per month. A noticeable decreasing trend in the sediment load was also observed from the major rivers drained into the KG basin. The monthly runoff, precipitation, and wind fields were analysed to understand the Chl-a distribution patterns during the study period. We observed that runoff, precipitation, and wind forcing are the primary drivers controlling Chl-a distributions and dispersion patterns in the study area. The findings of this study contribute to a better understanding of the potential impacts of Chl-a to marine ecosystem, and provides new tools for assessing long-term trends in satellite-derived Chl-a concentrations in the prospective of climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anitha, G., Ramana, M. V., Ramprasad, T., Dewangan, P., & Anuradha, M. (2014). Shallow geological environment of Krishna–Godavari offshore, eastern continental margin of India as inferred from the interpretation of high resolution sparker data. Journal of Earth System Science, 123(2), 329–342.

    Article  Google Scholar 

  • Balakrishna, K., & Probst, J. (2005). Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India. Biogeochemistry, 73, 457–473. https://doi.org/10.1007/s10533-004-0879-2.

  • Borkman, D. G., & Smayda, T. J. (1998). Long-term trends in water clarity revealed by Secchidisk measurements in lower Narragansett Bay. ICES Journal of Marine Science, 55(4), 668–679.

    Article  Google Scholar 

  • Boyce, D. G., Dowd, M., Lewis, M. R., & Worm, B. (2014). Estimating global chlorophyll changes over the past century. 2014. Progress Oceanography, 122, 163–173. https://doi.org/10.1016/j.pocean.2014.01.004

    Article  Google Scholar 

  • Capuzzo, E., Stephens, D., Silva, T., Barry, J., & Forster, R. M. (2015). Decrease in water clarity of the southern and central North Sea during the 20th century. Global Change Biology, 21, 2206–2214. https://doi.org/10.1111/gcb.12854

    Article  Google Scholar 

  • Chanapathi, T., Thatikonda, S., & Raghavan, S. (2018). Analysis of rainfall extremes and water yield of Krishna river basin under future climate scenarios. Journal of Hydrology: Regional Studies, 19, 287–306.

  • Chaurasiya, P. K., Prasad, V., & Khare, R. (2013). Scenario and risk of hydro power projects in India. International Journal of ChemTech Research, 5(2), 1068–1075.

  • Cheng, P., Li, M., & Li, Y. (2013). Generation of an estuarine sediment plume by a tropical storm. Journal of Geophysical Research: Biogeosciences., 118, 856–868.

    Article  Google Scholar 

  • CWC. (2016). Suspended Sediment Year Book. Vol 2. Central Water Commission. Government of India.

  • de Eyto, E., Jennings, E., Ryder, E., Sparber, K., Dillane, M., Dalton, C., & Poole, R. (2016). Response of a humic lake ecosystem to an extreme precipitation event: Physical, chemical, and biological implications. Inland Waters, 6(4), 483–498.

    Article  Google Scholar 

  • Dey, S., & Singh, R. P. (2003). Comparison of chlorophyll distributions in the northeastern Arabian Sea and southern Bay of Bengal using IRS-P4 ocean color monitor data. Remote Sensing of Environment., 85, 424–428.

    Article  Google Scholar 

  • Doron, M., Babin, M., Hembise, O., Mangin, A., & Garnesson, P. (2011). Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data. Remote Sensing of Environment, 115(12), 2986–3001.

    Article  Google Scholar 

  • Doxaran, D., Lamquin, N., Park, Y. J., Mazeran, C., Ryu, J. H., Wang, M., & Poteau, A. (2014). Retrieval of the seawater reflectance for suspended solids monitoring in the East China sea using MODIS, MERIS and GOCI satellite data. Remote Sensing of Environment, 146, 36–48.

    Article  Google Scholar 

  • Gomes, H. R., Goes, J. I., & Saino, T. (2000). Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Continental Shelf Research, 20, 313–330.

    Article  Google Scholar 

  • Hu, C. M., Lee, Z. P., Ma, R. H., Yu, K., Li, D. Q., & Shang, S. L. (2010). Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research-Oceans, 115, 4.

    Article  Google Scholar 

  • Hu, C., Weisberg, R. H., Liu, Y., Zheng, L., Daly, K. L., English, D. C., Zhao, J., & Vargo, G. A. (2011). Did the northeastern Gulf of Mexico become greener after the deepwater horizon oil spill? Geophysical Research Letters. https://doi.org/10.1029/2011gl047184

    Article  Google Scholar 

  • Jie, W., Chen, C., & Nukapothula, S. (2020). Atmospheric correction of GOCI using quasi-synchronous VIIRS data in highly turbid coastal waters. Remote Sensing, 12(1), 89. https://doi.org/10.3390/rs12010089

    Article  Google Scholar 

  • Kim, H. C., Son, S., Kim, Y. H., Khim, J. S., Nam, J., Chang, W. K., et al. (2017). Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids. Marine Pollution Bulletin., 121, 425–434. https://doi.org/10.1016/j.marpolbul.2017.05.026

    Article  Google Scholar 

  • Kone, V., Aumont, O., Lévy, M., & Resplandy, L. (2009). Physical and biogeochemical controls of the phytoplankton seasonal cycle in the Indian Ocean: A modeling study. Indian ocean biogeochemical processes and ecological variability. Geophysical Monography Series, 185, 350.

    Google Scholar 

  • Kvenvolden, K. A. (1993). Gas hydrates as a potential energy resource—A review of their methane content; In: Howell, D.G. (ed.) The future of energy gases, US Geological Survey Professor Paper. vol. 1570, pp. 555–561.

  • Liu, Y., Weisberg, R. H., Lenes, J. M., Zheng, L., Hubbard, K., & John, J. W. (2016). Offshore forcing on the “pressure point” of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms. Journal of Geophysical Research: Oceans, 121, 5501–5515. https://doi.org/10.1002/2016JC011938

    Article  Google Scholar 

  • Luang-on, J., Ishizaka, J., Buranapratheprat, A., et al. (2021). Seasonal and interannual variations of MODIS Aqua chlorophyll-a (2003–2017) in the Upper Gulf of Thailand influenced by Asian monsoons. Journal of Oceanography. https://doi.org/10.1007/s10872-021-00625-2

    Article  Google Scholar 

  • Maberly, S. C., & Elliott, J. A. (2012). Insights from long-term studies in the Windermere catchment: External stressors, internal interactions and the structure and function of lake ecosystems. Freshwater Biology, 57(2), 233–243.

    Article  Google Scholar 

  • Meng, X., Zhang, Y., Yu, X., Zhan, J., Chai, Y., Critto, A., et al. (2015). Analysis of the temporal and spatial distribution of lake and reservoir water quality in China and changes in its relationship with GDP from 2005 to 2010. Sustainability, 7(2), 2000–2027.

    Article  Google Scholar 

  • Milliman, J. D., & Farnsworth, K. L. (2013). River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press.

    Google Scholar 

  • Mohanty, P. K., Pradhan, Y., Nayak, S. R., Panda, U. S., & Mohapatra, G. N. (2008). Sediment dispersion in the Bay of Bengal. Monitoring and Modelling Lakes and Coastal Environments (springer). https://doi.org/10.1007/978-1-4020-6646-7_5

    Article  Google Scholar 

  • Narayana, A. C. (2006). Rainfall variability and its impact on sediment discharge from the rivers of Kerala region, Southwestern India. Journal of Geological. Society of India, 68, 546–558.

    Google Scholar 

  • Nukapothula, S., Chen, C., Yunus, A., & Wu, J. (2018). Satellite-based observations of intense chlorophyll-a bloom in response of cold core eddy formation: A study in the Arabian Sea, Southwest Coast of India. Regional Studies of Marine Science, 24, 303–310.

    Article  Google Scholar 

  • Nukapothula, S., Chen, C., & Wu, J. (2019). Long-term distribution patterns of remotely sensed water quality parameters in Pearl River Delta, China. Estuarine, Coastal and Shelf Science, 221, 90–103.

  • Nukapothula, S., Chen, C., & Yunus, A. P. (2022). Seasonal sediment plumes in the Krishna-Godavari basin using satellite observations. Deep-Sea Research Part I. Oceanographic Research Papers, 188, 103850.

  • Nukapothula, S., Wu, J., Chen, C., & Yunus, A. P. (2021). Potential impact of the extensive oil spill on primary productivity in the Red Sea waters. Continental Shelf Research, 222, 104437.

  • O’Reilly, C. M., Alin, S. R., Plisnier, P. D., Cohen, A. S., & McKee, B. A. (2003). Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature, 424(6950), 766.

    Article  Google Scholar 

  • Penning, W. E., Genseberger, M., Uittenbogaard, R. E., et al. (2013). Quantifying measures to limit wind-driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes. Hydrobiologia, 710, 279–295.

    Article  Google Scholar 

  • Philippart, C., van Iperen, J., Cadee, G., & Zuur, A. (2010). Long-term field observations on seasonality in chlorophyll-a concentrations in a shallow coastal marine ecosystem, the Wadden Sea. Estuarine Coasts, 33, 286–294. https://doi.org/10.1007/s12237-009-9236-y

    Article  Google Scholar 

  • Qasim, S. Z. (1977). Biological productivity of the Indian Ocean. Indian Journal of Marine Science, 6, 122–137.

    Google Scholar 

  • Rao, C. K., Naqvi, S. W. A., Kumar, M. D., Varaprasad, S. J. D., Jayakumar, D. A., George, M. D., & Singbal, S. Y. S. (1994). Hydrochemistry of the Bay of Bengal: Possible reasons for a different water-column cycling of carbon and nitrogen from the Arabian Sea. Marine Chemistry, 47, 279–290.

    Article  Google Scholar 

  • Rhea, W. J., & Davis, C. O. (1997). A comparison of the SeaWiFS chlorophyll and CZCS pigment algorithms using optical data from the 1992 JGOFS Equatorial Pacific Time Series. Deep Sea Research. II, 44, 1907–1925.

    Article  Google Scholar 

  • Rose, K. C., Greb, S. R., Diebel, M., & Turner, M. G. (2017). Annual precipitation regulates spatial and temporal drivers of lake water clarity. Ecological Application., 27(2), 632–643.

    Article  Google Scholar 

  • Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., Ravichandran, M., Vichi, M., & Lévy, M. (2016). A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophysical Research Letters, 43, 826–833.

    Article  Google Scholar 

  • Ryan, J. P., Yoder, J. A., Barth, J. A., & Cornillon, P. C. (1999). Chlorophyll enhancement and mixing associated with meanders of the shelf break front in the mid-Atlantic bight. Journal ofGeophysical Research, 104, 23479–23493.

    Article  Google Scholar 

  • Sarangi, R. K., & Nanthini Devi, K. (2016). Space based observation of chlorophyll, sea surface temperature, nitrate and sea surface height anomaly over the Bay of Bengal and Arabian Sea. Advanced Space Research. https://doi.org/10.1016/j.asr.2016.08.038

    Article  Google Scholar 

  • Sarangi, R. K., Nayak, S. R., & Panigrahy, R. C. (2008). Monthly variability of chlorophyll and associated physical parameters in the southwest Bay of Bengal water using remote sensing data. Indian Journal of Marine Science, 37(3), 256–266.

    Google Scholar 

  • Schoot, F. A., & McCreary, J. P. (2001). The monsoon circulation of the Indian Ocean. Progresse in Oceanography., 51, 1–123.

    Article  Google Scholar 

  • Schubel, J. R., & Carter, H. H. (1977). Suspended sediment budget for Chesapeake Bay. In M. L. Wiley (Ed.), Estuarine Processes (pp. 48–62). Academic Press.

    Chapter  Google Scholar 

  • Shen, F., Verhoef, W., Zhou, Y., Salama, M. S., & Liu, X. (2010). Satellite estimates of widerange suspended sediment concentrations in Changjiang (Yangtze) Estuary using MERIS data. Estuarine Coasts, 33, 1420–1429.

    Article  Google Scholar 

  • Shetye, S. R., Kumar, M. D., & Shankar, D. (2007). The Mandovi and Zuari Estuaries. Goa: National Institute of Oceanography.

    Google Scholar 

  • Shi, W., & Wang, M. (2008). Three-dimensional observations fromMODIS and CALIPSO for ocean responses to cyclone Nargis in the Gulf of Martaban. Geophysical Research Letters, 35, L21603. https://doi.org/10.1029/2008GL035279

    Article  Google Scholar 

  • Shi, W., & Wang, M. (2010). Satellite observations of the seasonal sediment plume in central East China Sea. Journal of Marine Systems, 82(4), 280–285. https://doi.org/10.1016/j.jmarsys.2010.06.002

    Article  Google Scholar 

  • Shi, B. W., Yang, S. L., Wang, Y. P., Yu, Q., & Li, M. L. (2014). Intratidal erosion and deposition rates inferred from field observations of hydrodynamic and sedimentary processes: A case study of a mudflat–saltmarsh transition at the Yangtze delta front. Continental Shelf Research, 90, 109–116.

  • Shi, B. W., Wang, Y. P., Yang, Y., Ni, W. F., Li, P., & Gao, J. H. (2015). Determination of critical shear stresses for erosion and deposition based on in situ measurements of currents and waves over an intertidal mudflat. Journal of Coastal Research, 31(6), 1344–1356.

  • Sravanthi, N., Venkata, R., Yunus, A. P., Ashraf, M., Ali, M. M., & Allu, N. (2013). An algorithm for estimating suspended sediment concentrations in coastal waters of India using remotely sensed reflectance and its application to coastal environments. International Journal of Environmental Research, 7, 841–850.

    Google Scholar 

  • Sravanthi, N., Yunus, A. P., & Narayana, A. C. (2017). Merging gauge data and models with satellite data from multiple sources to aid the understanding of long term trends in chlorophyll-a concentration. Remote Sensing Letters, 8(5), 419–428. https://doi.org/10.1080/2150704X.2016.1278308

    Article  Google Scholar 

  • Stone, H. B., Banas, N. S., MacCready, P., Kudela, R. M., & Ovall, B. (2020). Linking chlorophyll concentration and wind patterns using satellite data in the Central and Northern California Current System. Frontier in Marine Sciences, 7, 551562. https://doi.org/10.3389/fmars.2020.551562

    Article  Google Scholar 

  • Sun, Y.-J., Jalon-Rojas, I., Wang, X. H., & Jiang, D. (2018). Coastal upwelling by wind-driven forcing in Jervis Bay, New South Wales: A numerical study for 2011. Estuarine Coastal Shelf Science., 206, 101–115.

    Article  Google Scholar 

  • Suominen, T., & Tolvanen, H. (2016). Temporal analysis of remotely sensed turbidity in a coastal archipelago. International Journal of Applied Earth Observation Geoinformation, 49, 188–199.

    Article  Google Scholar 

  • Vinayachandran, P. N., Murty, V. S. N., & Ramesh Babu, V. (2002). Observations of barrier layer formation in the Bay of Bengal during summer monsoon. Journal of Geophysical Research, 107(C12), 8018. https://doi.org/10.1029/2001JC000831

    Article  Google Scholar 

  • Walker, N. D., Leben, R. R., & Balasubramanian, S. (2005). Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophysical Research Letters, 32, 18610. https://doi.org/10.1029/2005GL023716

    Article  Google Scholar 

  • Weisberg, R. H., & Liu, Y. (2022). Local and deep-ocean forcing effects on the West Florida Shelf circulation and ecology. Frontiers in Marine Sciences, 9, 863227. https://doi.org/10.3389/fmars.2022.863227

    Article  Google Scholar 

  • Weisberg, R. H., Liu, Y., Lembke, C., Hu, C., Hubbard, K., & Garrett, M. (2019). The coastal ocean circulationinfluence on the 2018 West Florida Shelf K.brevis red tide bloom. Journal of Geophysical Research: Oceans, 124, 2501–2512. https://doi.org/10.1029/2018JC014887

    Article  Google Scholar 

  • Williams, C., Sharples, J., Mahaffey, C., & Rippeth, T. (2013). Wind-driven nutrient pulses to the subsurface chlorophyll maximum in seasonally stratified shelf seas. Geophysical Research Letters, 40, 5467–5472. https://doi.org/10.1002/2013GL058171

    Article  Google Scholar 

  • Xie, X., Li, M., & Ni, W. (2018). Roles of wind-driven currents and surface waves in sediment resuspension and transport during a tropical storm. Journal of Geophysical Research. Oceans, 123, 8638–8654.

    Article  Google Scholar 

  • Yokouchi, K., Takeshi, K., Matsumoto, I., Fujiwara, G., Kawamura, H., & Okuda, K. (2000). OCTS-derived chlorophyll-a concentration and oceanic structure in the Kuroshio frontal region off the Joban/Kashima coast of Japan. Remote Sensing of Environment, 73(2), 188–197. https://doi.org/10.1016/S0034-4257(00)00093-6

    Article  Google Scholar 

  • Yuan, D., Zhu, J., Li, C., & Hu, D. (2008). Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations. Journal of Marine Systems, 70, 134–149. https://doi.org/10.1016/j.jmarsys.2007.04.002

    Article  Google Scholar 

  • Zang, Z., Ji, R., Liu, Y., Chen, C., Li, Y., Li, S., & Davis, C. S. (2022). Remote silicate supply regulates spring phytoplankton bloom magnitude in the Gulf of Maine. Limnology and Oceanography Letters, 7(2022), 277–285. https://doi.org/10.1002/lol2.10245

    Article  Google Scholar 

  • Zar, J. (1976). Biostatistical Analysis (3rd ed.). Prentice-Hall.

    Google Scholar 

  • Zhang, Q., Hirnch, R. M., & Ball, W. P. (2016). Long-term changes in sediment and nutrient delivery from Conowingo dam to Chesapeake bay: Effects of reservoir sedimentation. Environmental Science Technololgy, 50, 1877–1886.

    Article  Google Scholar 

  • Zhao, C., Maerz, J., Hofmeister, R., Rottgers, R., Wirtz, K., Riethmiller, R., & Schrum, C. (2019). Characterizing the vertical distribution of chlorophyll a in the German Bight. Continental Shelf Reseach, 175, 127–146.

    Article  Google Scholar 

Download references

Acknowledgements

We thank NASA Ocean Color for MODIS chlorophyll-a data. The river discharge is downloaded from the Water Resources Information System, India. We also thank NCEP/NCAR for providing the reanalysis wind field and precipitation. Chuqun Chen thanks the National Natural Science Foundation of China (No. (U1901215) and Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0305) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sravanthi Nukapothula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nukapothula, S., Chen, C., Yunus, A.P. et al. Trends in Chlorophyll-a Concentration Along the Krishna–Godavari Basin as Observed From MODIS Archives. Pure Appl. Geophys. 179, 3827–3840 (2022). https://doi.org/10.1007/s00024-022-03141-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03141-6

Keywords

Navigation