Skip to main content
Log in

The Muyakan Earthquake Sequence in the North Muya Region of the Baikal Rift Zone: Detailed Analysis and Possible Reasons

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present results of detailed studies of the Muyakan earthquake sequence, which occurred in the North Muya region of the Baikal rift zone and which is the largest one in the Baikal region as a whole. In its epicentral area, more than 16 thousands of seismic events with M ≥ 1.0 were registered in 2014–2018. The considered sequence is of interest due to the specific tectonic pattern of the North Muya region, occupying a part of the mountain range between the Upper Angara and Muya rift basins, and the proximity of its epicentral field to the eastern portal of the North Muya tunnel of the Baikal-Amur Railway. An analysis of unique seismological data, obtained during the sequence, shows that its seismic regime is characterized by a division of the epicentral field into separate clusters, in which the earthquakes with the most reliably determined depths (about 600 seismic events) occurred in the upper crust (h 4–10 km, δh < 3 km). Focal mechanisms, determined for 111 earthquakes with M ≥ 2.8 from P-wave first-motion polarities recorded at regional stations, and seismic moment tensors, calculated for 20 events with Mw ≥ 4.2 from teleseismic surface wave data, demonstrate various types of movements in the earthquake sources. Nethertheless, about 50% of the considered events are normal (rift) faults. The tectonic fragmentation of the crust and its intensive flooding with deep thermal waters in the area of the intersection of the Perevalny and Muyakan faults are two possible reasons for the Muyakan sequence occurrence. At the same time, the state of the local seismoactive mountain massif could also be influenced by man-made factors, associated with redistribution of stresses in the crust related to construction and operation of the North Muya tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amezawa, Y., Maeda, T., & Kosuga, M. (2021). Migration diffusivity as a controlling factor in the duration of earthquake swarms. Earth, Planets and Space, 73, 148. https://doi.org/10.1186/s40623-021-01480-7

    Article  Google Scholar 

  • Aptekman, Z. Y., & Tatevossian, R. E. (2007). On the possibility of detecting complex sources of earthquakes from data of the centroid moment tensor catalog. Izvestiya, Physics of the Solid Earth, 43(5), 354–359. https://doi.org/10.1134/S1069351307050023

    Article  Google Scholar 

  • Bassin, C., Laske, G., & Masters, G. (2000). The current limits of resolution for surface wave tomography in North America. EOS, Transactions AGU, 81, F897.

    Google Scholar 

  • Bukchin, B. G. (1990). Determination of source parameters from surface wave recording allowing for uncertainties in the properties of medium. Izvestiya AN SSSR, Fizika Zemli, 25, 723–728.

    Google Scholar 

  • Bukchin, B., Clevede, E., & Mostinskiy, A. (2010). Uncertainty of moment tensor determination from surface wave analysis for shallow earthquakes. Journal of Seismology, 14(3), 601–614. https://doi.org/10.1007/s10950-009-9185-8

    Article  Google Scholar 

  • Cherepanova, Y., Artemieva, I. M., Thybo, H., & Chemia, Z. (2013). Crustal structure of the Siberian Craton and the West Siberian Basin: An appraisal of existing data. Tectonophysics, 609, 154–183. https://doi.org/10.1016/j.tecto.2013.05.004

    Article  Google Scholar 

  • Chipizubov, A. V., Smekalin, O. P., Semenov, R. M., & Imaev, V. S. (2010). Paleoseismicity of the pribaikalie. Seismic Instruments, 46(2), 136–151. https://doi.org/10.3103/S0747923910020040

    Article  Google Scholar 

  • Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., & San’kov, V. (1997). Paleostress reconstructions and geodynamics of the Baikal region, central Asia, Part 2 Cenozoic Rifting. Tectonophysics, 282(1–4), 1–38. https://doi.org/10.1016/S0040-1951(97)00210-2

    Article  Google Scholar 

  • Déverchère, J., Houdry, F., Solonenko, N. V., Solonenko, A. V., & Sankov, V. A. (1993). Seismicity, active faults and stress field of the North Muya region, Baikal rift: New insights on the rheology of extended continental lithosphere. Journal of Geophysical Research: Solid Earth, 98(B11), 19895–19912. https://doi.org/10.1029/93JB01429

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  • Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341, 1225942. https://doi.org/10.1126/science.1225942

    Article  Google Scholar 

  • Filippova, A. I., Bukchin, B. G., Fomochkina, A. S., Melnikova, V. I., Radziminovich, Y. B., & Gileva, N. A. (2022). Source process of the September 21, 2020 Mw 5.6 Bystraya earthquake at the south-eastern segment of the Main Sayan fault (Eastern Siberia, Russia). Tectonophysics, 822, 229162. https://doi.org/10.1016/j.tecto.2021.229162

    Article  Google Scholar 

  • Filippova, A. I., Golubev, V. A., & Filippov, S. V. (2021). Curie point depth and thermal state of the lithosphere beneath the northeastern flank of the Baikal rift zone and adjacent areas. Surveys in Geophysics, 42, 1143–1170. https://doi.org/10.1007/s10712-021-09651-7

    Article  Google Scholar 

  • Frohlich, C. (1992). Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75(1–3), 193–198. https://doi.org/10.1016/0031-9201(92)90130-N

    Article  Google Scholar 

  • Gileva, N. A., Mel’nikova, V. I., Radziminovich, N. A., & Déverchère, J. (2000). Localization of earthquake and average characteristics of the crust in some parts of the Cis-Baikal region. Geologiya i Geofizika, 41(5), 629–636.

    Google Scholar 

  • Gileva, N. A., Melnikova, V. I., Seredkina, A. I., & Radziminovich, Y. B. (2020). The May 23, 2014, Mw 5.5 Muyakan-II earthquake (Northern Baikal region). In Earthquakes of Northern Eurasia, 23, 323–333. https://doi.org/10.35540/1818-6254.2020.23.33. GS RAS, Obninsk (in Russian).

    Article  Google Scholar 

  • Gileva, N. A., Melnikova, V. I., Filippova, A. I., Radziminovich, Y. B., & Kobeleva, E. A. (2021). Muyakan sequence of the earthquakes in 2015 (Northern Baikal region). In Earthquakes of Northern Eurasia, 24, 245–257. https://doi.org/10.35540/1818-6254.2021.24.24. GS RAS, Obninsk (in Russian).

    Article  Google Scholar 

  • Global CMT Web Page (2021) On-line Catalog. Lamont-Doherty Earth Observatory (LDEO) of Columbia University, Columbia, SC, USA. http://www.globalcmt.org Accessed 3 Feb 2022

  • Golenetsky, S. I. (1988). Earthquakes in Baikal and Transbaikalia in 1985. Earthquakes in the USSR in 1985 (pp. 124–135). Moscow (in Russian): Nauka.

    Google Scholar 

  • Grabar, A. V. (1997). Technogenic impact of the construction of the Severo-Muisky BAM tunnel on hydrogeological conditions. Vestnik RUDN Series Ecology and Safety of Life, 2, 78–82. in Russian.

    Google Scholar 

  • Hainzl, S., Fisher, T., & Dahm, T. (2012). Seismicity-based estimation of the driving fluid pressure in the case of swarm activity in Western Bohemia. Geophysical Journal International, 191, 271–281. https://doi.org/10.1111/j.1365-246X.2012.05610.x

    Article  Google Scholar 

  • Hicks, S., Verdon, J., Baptie, B., Luckett, R., Mildon, Z., & Gernon, T. (2019). A shallow earthquake swarm close to hydrocarbon activities: Discriminating between natural and induced causes for the 2018–2019 Surrey, United Kingdom, earthquake sequence. Seismological Research Letters, 90, 2095–2110. https://doi.org/10.1785/0220190125

    Article  Google Scholar 

  • Horálek, J., & Fischer, T. (2008). Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: Just what we know (a review). Studia Geophysica Et Geodaetica, 52(4), 455–478. https://doi.org/10.1007/s11200-008-0032-0

    Article  Google Scholar 

  • International Seismological Centre (2021). On-line Bulletin. Internatl. Seis. Cent., Thatcham, United Kingdom. http://www.isc.ac.uk Accessed 3 Feb 2022

  • Khromovskikh, V. S., Solonenko, V. P., Chipizubov, A. V., & Zhilkin, V. M. (1978). On the seismotectonic characteristics of the Northern Baikal region. Seismicity and deep structure of the Baikal region (pp. 101–107). Novosibirsk (in Russian): Nauka.

    Google Scholar 

  • Kissling, E. (1995). Programm VELEST users Guide-Short Introduction, Internet version. Retrieved January 27, 2022, from https://git.geo.vuw.ac.nz/beliaeal/velest/raw/commit/0cc7330fc7c98d0a0e8df2e5fff9d4d0824cd363/UsersGuide/velest_guide.pdf

  • Kochetkov, V. M., Borovik, N. S., Misharina, L. A., & Melnikova, V. I. (1987). Angarakan earthquake swarm in the Baikal rift zone. Nauka. in Russian.

    Google Scholar 

  • Kolmogorov, V. G. (2012). Tectonophysical interpretation of the results of multiple leveling in the area of the Severomuisky tunnel of the Baikal-Amur railroad. Interexpo GEO-Siberia, 4, 159–164. in Russian.

    Google Scholar 

  • Krylov, S. V., Mishenkina, Z. R., Kulchinsky, Yu. V., Ten, E. N., & Sheludko, I. F. (1993). Characteristics of the seismically active lithosphere for the northeast of the Baikal region according to the data of detailed works by the DSS method on P- and S-waves. Geologiya i Geofizika, 34(8), 110–119. in Russian.

    Google Scholar 

  • Lander, A.V. (2018) Software for calculation and graphical representation of earthquake focal mechanisms from P-wave first-motion polarities (FA). The software was registered in Russia (certificate No. 2018662004, September 25, 2018)

  • Lasserre, C., Bukchin, B., Bernard, P., Tapponnier, P., Gaudemer, Y., Mostinsky, A., & Dailu, R. (2001). Source parameters and tectonic origin of the 1996 June 1 Tianzhu (Mw=5.2) and 1995 July 21 Yongen (Mw=5.6) earthquakes near the Haiyuan fault (Gansu, China). Geophysical Journal International, 144(1), 206–220. https://doi.org/10.1046/j.1365-246x.2001.00313.x

    Article  Google Scholar 

  • Levshin, A. L., Yanovskaya, T. B., Lander, A. V., Bukchin, B. G., Barmin, M. P., Ratnikova, L. I., & Its, E. N. (1989). Recording, identification, and measurement of surface wave parameters. In V. I. Keilis-Borok (Ed.), Seismic surface waves in a laterally inhomogeneous earth. Modern approaches in geophysics (Vol. 9, pp. 131–182). Dordrecht: Springer. https://doi.org/10.1007/978-94-009-0883-3_5

    Chapter  Google Scholar 

  • Lienert, B. R., Berg, E., & Frazer, L. N. (1986). HYPOCENTER: An earthquake location method using centered, scaled, and adaptively damped least squares. Bulletin of the Seismological Society of America, 76(3), 771–783. https://doi.org/10.1785/BSSA0760030771

    Article  Google Scholar 

  • Lienert, B. R., & Havskov, J. (1995). A computer program for locating earthquakes both locally and globally. Seismological Research Letters, 66(5), 26–36. https://doi.org/10.1785/gssrl.66.5.26

    Article  Google Scholar 

  • Logachev, N. A. (Ed.). (1984). Geology and seismicity of the Baikal-Amur Mainline zone Neotectonics. Nauka. in Russian.

  • Logachev, N. A. (2003). History and geodynamic of the Baikal rift. Russian Geology and Geophysics, 44(5), 391–406.

    Google Scholar 

  • Logatchev, N. A., & Zorin, Y. A. (1992). Baikal rift zone: Structure and geodynamics. Tectonophysics, 208, 273–286. https://doi.org/10.1016/0040-1951(92)90349-B

    Article  Google Scholar 

  • Lomonosov, I. S. (Ed.). (1984). Geology and seismicity of the Baikal-Amur Mainline zone Hydrogeology. Nauka. in Russian.

  • Lukk, A. A., Yunga, S. L., Shevchenko, V. I., & Hamburger, M. W. (1995). Earthquake focal mechanisms, deformation state, and seismotectonics of the Pamir-Tien Shan region, Central Asia. Journal of Geophysical Research: Solid Earth, 100(B10), 20321–20343. https://doi.org/10.1029/95JB02158

    Article  Google Scholar 

  • Mandelbaum, M. M. (Ed.). (1983). Geology and seismicity of the Baikal-Amur Mainline zone. Structural-material complexes and tectonics. Nauka. in Russian.

  • Massin, F., Farrell, J., & Smith, R. (2013). Repeating earthquakes in the yellowstone volcanic field: Implications for rupture dynamics, ground deformation, and migration in earthquake swarms. Journal of Volcanology and Geothermal Research, 257, 159–173. https://doi.org/10.1016/j.jvolgeores.2013.03.022

    Article  Google Scholar 

  • Melnikova, V. I., Gileva, N. A., Kurushin, R. A., Masalskiy, O. K., & Shlaevskaya, N. S. (2003). Allocation of conditional areas for annual surveys of seismicity in the Baikal and Transbaikalia region. In Earthquakes in Northern Eurasia in 1997 (pp. 107–117). GS RAN, Obninsk (in Russian)

  • Melnikova, V. I., Gileva, N. A., Radziminovich, Ya. B., Ochkovskaya, M. G., & Seredkina, A. I. (2013). Perceptible earthquakes of the Northern Muya area in 2007 (Northern Baikal Region): April 5, Mw 4.9 Mudirikan and August 23, Mw 4.8 South Muyakan earthquakes. In Earthquakes of Northern Eurasia in 2007 (pp. 351–362). GS RAN, Obninsk (in Russian)

  • Melnikova, V. I. (1990). Peculiarities of seismic wave emission during earthquakes of the Angarakan swarm in the Severo-Muya region of the Baikal rift zone. Geologiya i Geofizika, 31(11), 98–106. in Russian.

    Google Scholar 

  • Melnikova, V. I., & Misharina, L. A. (1986). Some Regularities in the development of the Angarakan earthquake swarm in the Northern Muya Region of the Baikal rift zone. Geologiya i Geofizika, 27(12), 68–75. in Russian.

    Google Scholar 

  • Melnikova, V. I., Seredkina, A. I., & Gileva, N. A. (2020). Spatio-temporal patterns of the development of strong seismic activations (1999–2007) in the Northern Baikal area. Russian Geology and Geophysics, 61(1), 96–109. https://doi.org/10.15372/RGG2019103

    Article  Google Scholar 

  • Mirzoev, K. M., Nikolaev, A. V., Lukk, A. A., & Yunga, S. L. (2009). Induced seismicity and the possibilities of controlled relaxation of tectonic stresses in the earth’s crust. Izvestiya, Physics of the Solid Earth, 45(10), 885–904. https://doi.org/10.1134/S1069351309100061

    Article  Google Scholar 

  • Misharina, L. A., Solonenko, N. V., & Melnikova, V. I. (1984). On the mechanism of earthquake foci in the Northern Muya region of the Baikal rift zone. Geologiya i Geofizika, 25(4), 105–113. in Russian.

    Google Scholar 

  • Mishen’kina, Z. R., & Mishen’kin, B. P. (2004). Study of the crust-mantle transition zone in the northwestern Baikal rift zone from refraction and reflection data. Izvestiya, Physics of the Solid Earth, 40(5), 395–404.

    Google Scholar 

  • Nataf, H. C., & Ricard, Y. (1996). 3SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling. Physics of the Earth and Planetary Interiors, 95(1–2), 101–122. https://doi.org/10.1016/0031-9201(95)03105-7

    Article  Google Scholar 

  • Naujoks, M., Jahr, T., Jentzsch, G., Kurz, J. H., & Hofmann, Y. (2007). Investigations about earthquake swarm areas and processes. In P. Tregoning & C. Rizos (Eds.), Dynamic planet. International Association of Geodesy Symposia (Vol. 130, pp. 528–535). Berlin: Springer. https://doi.org/10.1007/978-3-540-49350-1_77

    Chapter  Google Scholar 

  • Puzyrev, N. N., Mandelbaum, M. M., Krylov, S. V., Mishenkin, B. P., Petrik, G. V., & Krupskaya, G. V. (1978). Deep structure of the Baikal and other continental rift zones from seismic data. Tectonophysics, 45(1), 15–22. https://doi.org/10.1016/0040-1951(78)90219-6

    Article  Google Scholar 

  • Rautian, T. G., Khalturin, V. I., Fujita, K., Mackey, K. G., & Kendall, A. D. (2007). Origins and methodology of the Russian energy K-class system and its relationship to magnitude scales. Seismological Research Letters, 78(6), 579–590. https://doi.org/10.1785/gssrl.78.6.579

    Article  Google Scholar 

  • Sankov, V. A., Dneprovsky, Yu. I., Kovalenko, S. N., Bornyakov, S. A., Gileva, N. A., & Gorbunova, S. A. (1991). Faults and seismicity of the Northern Muya geodynamic test site. Nauka. in Russian.

    Google Scholar 

  • Seleznev, V. S., Bryksin, A. A., Yemanov, A. A., Yemanov, A. F., Leskova, E. V., & Fateev, A. V. (2017). Trigger effects in the development of induced seismicity and human influence on the natural seismicity of Baikal and Kuzbass. Interexpo GEO-Siberia, 2(4), 13–17. in Russian.

    Google Scholar 

  • Seredkina, A. I. (2021). The state of the art in studying the deep structure of the Earth’s crust and upper mantle beneath the Baikal rift from seismological data. Izvestiya, Physics of the Solid Earth, 57(2), 180–202. https://doi.org/10.1134/S1069351321020117

    Article  Google Scholar 

  • Seredkina, A. I., & Gileva, N. A. (2016). Correlation between moment magnitude and energy class of earthquakes in Baikal Region and Transbaikalia. Seismic Instruments, 52(2), 29–38. in Russian.

    Google Scholar 

  • Seredkina, A. I., Gileva, N. A., & Melnikova, V. I. (2018). Causes of seismic activation in 1979–1993 in the Northern Muya region of the Baikal rift zone. Solar-terrestrial connections and geodynamics of the Baikal-Mongolian region, abstracts of the XII Russia-Mongolia conference (pp. 126–127). Irkutsk (in Russian): IGU Publishing House.

    Google Scholar 

  • Seredkina, A. I., & Kozmin, B. M. (2017). Source parameters of the Taimyr earthquake of June 9, 1990. Doklady Earth Sciences, 473(1), 342–345. https://doi.org/10.1134/S1028334X1702026X

    Article  Google Scholar 

  • Seredkina, A. I., & Melnikova, V. I. (2014). Seismic moment tensor of Pribaikalye earthquakes from the surface-wave amplitude spectra. Izvestiya, Physics of the Solid Earth, 50(3), 403–414. https://doi.org/10.1134/S1069351314030094

    Article  Google Scholar 

  • Seredkina, A. I., & Melnikova, V. I. (2018). Seismotectonic crustal strains of the Mongol-Baikal seismic belt from seismological data. In S. D’Amico (Ed.), Moment tensor solutions–a useful tool for seismotectonics (pp. 497–517). Switzerland: Springer. https://doi.org/10.1007/978-3-319-77359-9_22

    Chapter  Google Scholar 

  • Seredkina, A. I., Melnikova, V. I., Radziminovich, Y. B., & Gileva, N. A. (2020). Seismicity of the Erguna Region (Northeastern China): Evidence for local stress redistribution. Bulletin of the Seismological Society of America, 110(2), 803–815. https://doi.org/10.1785/0120190182

    Article  Google Scholar 

  • Solonenko, V. P. (Ed.). (1966). Live tectonics, volcanoes and seismicity of Stanovoy upland. Nauka. in Russian.

  • Solonenko, V. P. (Ed.). (1975). Seismotectonics, deep structure and seismicity of the northeast of the Baikal Rift Zone. Nauka. in Russian.

  • Solonenko, V. P. (Ed.). (1977). Seismic zoning of East Siberia and its geological-geophysical basis. Nauka. in Russian.

  • Soloviev, S. L. (Ed.). (1985). Geology and seismicity of the Baikal-Amur Mainline zone. Seismicity. Nauka. in Russian.

  • Suvorov, V. D., Mishenkina, Z. M., Petrik, G. V., Sheludko, I. F., Seleznev, V. S., & Solovyov, V. M. (2002). Structure of the crust in the Baikal rift zone and adjacent areas from Deep Seismic Sounding data. Tectonophysics, 351, 61–74. https://doi.org/10.1016/S0040-1951(02)00125-7

    Article  Google Scholar 

  • Waldhauser, F. (2001). HypoDD: A computer program to compute double-difference hypocenter locations. US Geol. Surv. Open-File Report, 01-113. 25 p

  • Yunga, S. L. (1979). On the mechanism of deformation of the seismically active volume of the earth’s crust. Izvestiya AN SSSR, Fizika Zemli, 10, 7–25. in Russian.

    Google Scholar 

  • Yunga, S. L. (1990). Methods and results of the study of seismotectonic strain. Nauka. in Russian.

    Google Scholar 

  • Yunga, S. L. (1997). Classification of seismic moment tensors on the basis of their isometric mapping on a sphere. Doklady Earth Sciences, 352(1), 108–110.

    Google Scholar 

  • Zhang, H., Wang, W., & Chai, L. (2022). The correlation of earthquake swarms and local velocity heterogeneities in the Brawley seismic zone, southern California. Physics of the Earth and Planetary Interiors, 322, 106814. https://doi.org/10.1016/j.pepi.2021.106814

    Article  Google Scholar 

  • Zhu, W., Allison, K. L., Dunham, E. M., & Yang, Y. (2020). Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip. Nature Communications, 11(1), 4833. https://doi.org/10.1038/s41467-020-18598-z

    Article  Google Scholar 

  • Zorin, Y. A., Kozhevnikov, V. M., Novoselova, M. R., & Turutanov, E. K. (1989). Thickness of the lithosphere beneath the Baikal rift zone and adjacent regions. Tectonophysics, 168(4), 327–337. https://doi.org/10.1016/0040-1951(89)90226-6

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the administration of the Geophysical Survey of the Russian Academy of Sciences for the opportunity to use the data from their unique research complex (Seismoinfrasonic Complex for Monitoring the Arctic Cryolithozone and Complex for Continuous Seismic Monitoring of the Russian Federation, Adjacent Areas, and the World). We kindly thank Yan B. Radziminovich (Baikal Branch of FRC GS RAS) for technical assistance in preparing the manuscript. The study is partially based on the data from the equipment of the Centre of Geodynamics and Geochronology (Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences).

Funding

This work was supported by the Russian Foundation for Basic Research under project No 20-05-00823.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed given of the study. Material preparation, data collection and analysis were performed by VIM, AIF, NAG. VIM and AIF wrote the paper. NAG contributed to visualization of the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Valentina I. Melnikova.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

24_2022_3124_MOESM1_ESM.xls

Supplementary file1 (Table S1) Focal mechanisms during the Muyakan sequence for solutions obtained from regional P-wave first-motion polarities (XLS 51 KB)

24_2022_3124_MOESM2_ESM.xls

Supplementary file2 (Table S2) Focal mechanisms before and during the Muyakan sequence for solutions obtained from teleseismic surface wave data and regional P-wave first-motion polarities (XLS 370 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikova, V.I., Filippova, A.I. & Gileva, N.A. The Muyakan Earthquake Sequence in the North Muya Region of the Baikal Rift Zone: Detailed Analysis and Possible Reasons. Pure Appl. Geophys. 179, 3157–3175 (2022). https://doi.org/10.1007/s00024-022-03124-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03124-7

Keywords

Navigation