Skip to main content
Log in

Implementation of Additional Beta–Gamma Detectors for Improved Radioxenon Laboratory Throughput

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The International Monitoring System includes a network of radionuclide detector stations and laboratories operated around the world monitoring for nuclear explosions. The United States Radionuclide Laboratory for radioxenon detection (USL16-NGL) was certified by the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization in 2016. Since the certification of the laboratory, an additional set of four radioxenon detectors have been added to the laboratory. These supplementary radioxenon detectors allow for improved throughput for the laboratory and improving the ability to measure short lived radioxenon isotopes. In this paper, we describe the implementation of the additional radioxenon detectors and how they compare to current capabilities. Additionally, we detail implementation procedures to leverage the increased throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Auer, M., Axelsson, A., Blanchard, X., Bowyer, T. W., Brachet, G., Bulowski, I., Dubasov, Y., Elmgren, K., Fontaine, J. P., Harms, W., Hayes, J. C., Heimbigner, T. R., McIntyre, J. I., Panisko, M. E., Popov, Y., Ringbom, A., Sartorius, H., Schmid, S., Schulze, J., & Wernsperger, B. (2004). Intercomparison experiments of systems for the measurement of xenon radionuclides in the atmosphere. Applied Radiation and Isotopes, 60(6), 863–877. https://doi.org/10.1016/j.apradiso.2004.01.011

    Article  Google Scholar 

  • Bowyer, T. W., Abel, K. H., Hubbard, C. W., McKinnon, A. D., Panisko, M. E., Perkins, R. W., Reeder, P. L., Thompson, R. C., & Warner, R. A. (1998). Automated separation and measurement of radioxenon for the Comprehensive Test Ban Treaty. Journal of Radioanalytical and Nuclear Chemistry, 235(1–2), 77–82. https://doi.org/10.1007/bf02385941

    Article  Google Scholar 

  • Bowyer, T. W., Schlosser, C., Abel, K. H., Auer, M., Hayes, J. C., Heimbigner, T. R., McIntyre, J. I., Panisko, M. E., Reeder, P. L., Satorius, H., Schulze, J., & Weiss, W. (2002). Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system. Journal of Environmental Radioactivity, 59(2), 139–151. https://doi.org/10.1016/S0265-931X(01)00042-X

    Article  Google Scholar 

  • Cagniant, A., Topin, S., Le Petit, G., Gross, P., Delaune, O., Philippe, T., & Douysset, G. (2018). SPALAX NG: A breakthrough in radioxenon field measurement. Applied Radiation and Isotopes, 134, 461–465. https://doi.org/10.1016/j.apradiso.2017.06.042

    Article  Google Scholar 

  • Cooper, M. W., Auer, M., Bowyer, T. W., Casey, L. A., Elmgren, K., Ely, J. H., Foxe, M. P., Gheddou, A., Gohla, H., Hayes, J. C., Johnson, C. M., Kalinowski, M., Klingberg, F. J., Liu, B., Mayer, M. F., McIntyre, J. I., Plenteda, R., Popov, V., & Zahringer, M. (2019). Radioxenon net count calculations revisited. Journal of Radioanalytical and Nuclear Chemistry, 321(2), 369–382. https://doi.org/10.1007/s10967-019-06565-y

    Article  Google Scholar 

  • Cooper, M. W., Ely, J. H., Haas, D. A., Hayes, J. C., McIntyre, J. I., Lidey, L. S., & Schrom, B. T. (2013). Absolute efficiency calibration of a beta–gamma detector. IEEE Transactions on Nuclear Science, 60(2), 676–680. https://doi.org/10.1109/TNS.2013.2243165

    Article  Google Scholar 

  • Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical Chemistry, 40(3), 586–593. https://doi.org/10.1021/ac60259a007

    Article  Google Scholar 

  • Foltz Biegalski, K. M., & Biegalski, S. R. (2001). Determining detection limits and minimum detectable concentrations for noble gas detectors utilizing beta–gamma coincidence systems. Journal of Radioanalytical and Nuclear Chemistry, 248(3), 673–682. https://doi.org/10.1023/A:1010684410475

    Article  Google Scholar 

  • Foxe, M., Cooper, M., Haas, D., Hayes, J., Lowrey, J., & Prinke, A. (2019). Study of Shadowing in Beta–Gamma Coincidence Plots for Radioxenon (Issue PNNL-28404)

  • Foxe, M., Bowyer, T., Cameron, I., Cooper, M., Hayes, J., Haas, D., Lidey, L., Mayer, M., Mendez, J., & Slack, J. (2020a). Design and operation of the U.S. Radionuclide Noble Gas Laboratory for the CTBTO. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-020-02591-0

    Article  Google Scholar 

  • Foxe, M., Bowyer, T., Carr, R., Orrell, J., & VanDevender, B. (2020b). Antineutrino detectors remain impractical for nuclear explosion monitoring. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-020-02464-6

    Article  Google Scholar 

  • Gohla, H., Auer, M., Cassette, P., Hague, R. K., Lechermann, M., & Nadalut, B. (2016). Radioxenon standards used in laboratory inter-comparisons. Applied Radiation and Isotopes, 109, 24–29. https://doi.org/10.1016/j.apradiso.2015.11.044

    Article  Google Scholar 

  • Haas, D. A., Eslinger, P. W., Bowyer, T. W., Cameron, I. M., Hayes, J. C., Lowrey, J. D., & Miley, H. S. (2017). Improved performance comparisons of radioxenon systems for low level releases in nuclear explosion monitoring. Journal of Environmental Radioactivity, 178–179, 127–135. https://doi.org/10.1016/j.jenvrad.2017.08.005

    Article  Google Scholar 

  • Reeder, P. L., Bowyer, T. W., & Perkins, R. W. (1998). Beta–gamma counting system for Xe fission products. Journal of Radioanalytical and Nuclear Chemistry, 235(1–2), 89–94. https://doi.org/10.1007/BF02385943

    Article  Google Scholar 

  • Ringbom, A., Larson, T., Axelsson, A., Elmgren, K., & Johansson, C. (2003). SAUNA—A system for automatic sampling, processing, and analysis of radioactive xenon. Nuclear Instruments and Methods in Physics Research, Section a: Accelerators, Spectrometers, Detectors and Associated Equipment, 508(3), 542–553. https://doi.org/10.1016/S0168-9002(03)01657-7

    Article  Google Scholar 

  • Watrous, M. G., Delmore, J. E., Hague, R. K., Houghton, T. P., Jenson, D. D., & Mann, N. R. (2015). Radioxenon spiked air. Journal of Environmental Radioactivity, 150, 126–131. https://doi.org/10.1016/j.jenvrad.2015.08.005

    Article  Google Scholar 

  • Zhou, C., Zhou, G., Feng, S., Zhao, X., Huang, D., Tian, Z., Yu, X., & Cheng, Z. (2019). Radon removal trap design and coefficient testing for the development of an effective radioxenon sampling, separation and measurement system. Journal of Environmental Radioactivity, 199–200, 39–44. https://doi.org/10.1016/j.jenvrad.2019.01.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Defense Threat Reduction Agency (DTRA) Nuclear Arms Control Technology (NACT) Program, U.S. Department of Defense, for funding this work. Any subjective views or opinions expressed in the paper do not necessarily represent the views of the U.S. Department of Energy, U.S. Department of Defense or the United States Government. Approved for public release; distribution is unlimited. PNNL-SA-169579.

Funding

This study was funded by Defense Threat Reduction Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Foxe.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foxe, M., Bowyer, T., Cameron, I. et al. Implementation of Additional Beta–Gamma Detectors for Improved Radioxenon Laboratory Throughput. Pure Appl. Geophys. 180, 1469–1478 (2023). https://doi.org/10.1007/s00024-022-03106-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03106-9

Keywords

Navigation