Skip to main content
Log in

Identification of Sea Breeze Onset and Its Effect on Surface Black Carbon Aerosols Over a Tropical Coastal Environment (12.81°N, 80.03°E) in India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Sea breeze onset studies are very important to understand the effects of local air pollution and its environmental impacts. In the present work, we obtained and studied the sea breeze onset time (SBOT) over a semi-urban environment (12.81°N, 80.03°E) located on a tropical east coast of India. Weather data measurements were carried out in the university campus of SRM Institute of Science and Technology from June 2019 to January 2020, except for the month of December 2019. The sea breeze component (SBC) was calculated on an hourly scale, and the SBOTs for different days were obtained and are discussed in detail. Measurements of surface black carbon mass concentration (SBCMC) from an aethalometer (AE-31) and aerosol optical depth (AOD) from a Microtops II Sunphotometer were obtained and used to assess the impact of sea breeze onset on SBCMC. The results of the study indicate that (i) the study site experienced the sea breeze on 33% of the 163 days of the study period, and the maximum days with SBOT occurred from 10:00 to 12:00 IST, (ii) an average decrease of 0.236 µg/m3 in SBCMC was observed on most of the days (72.2%) after the onset of the sea breeze, and (iii) an increase in AOD associated with a decrease in the Angstrom exponent (AE) was observed after the sea breeze onset, which suggests that the natural sea aerosols replaced the anthropogenic black carbon aerosols over the study location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen, S., Allen, D., Moss, K., Le Roux, G., Phoenix, V. R., & Sonke, J. E. (2020). Examination of the ocean as a source for atmospheric microplastics. PLoS One, 15(5), 1–14. https://doi.org/10.1371/journal.pone.0232746

    Article  Google Scholar 

  • Anurose, T. J., Subrahamanyam, D. B., & Sunilkumar, S. V. (2018). Two years observations on the diurnal evolution of coastal atmospheric boundary layer features over Thiruvananthapuram (8.5°N, 76.9°E), India. Theoretical and Applied Climatology, 131(1–2), 77–90. https://doi.org/10.1007/s00704-016-1955-y

  • Aravind, A., Srinivas, C. V., Hegde, M. N., Seshadri, H., & Mohapatra, D. K. (2022). Impact of land surface processes on the simulation of sea breeze circulation and tritium dispersion over the Kaiga complex terrain region near west coast of India using the Weather Research and Forecasting (WRF) model. Atmospheric Environment: X, 13(August 2021), 100149. https://doi.org/10.1016/j.aeaoa.2022.100149

  • Aruna, K., Kumar, T. V. L., Rao, D. N., Murthy, B. V. K., Babu, S. S., & Moorthy, K. K. (2013). Black carbon aerosols in a tropical semi-urban coastal environment: Effects of boundary layer dynamics and long range transport. Journal of Atmospheric and Solar-Terrestrial Physics, 104, 116–125. https://doi.org/10.1016/j.jastp.2013.08.020

    Article  Google Scholar 

  • Aruna, K., Lakshmi Kumar, T. V., Rao, D. N., Krishna Murthy, B. V., Babu, S. S., & Krishnamoorthy, K. (2014). Scattering and absorption characteristics of atmospheric aerosols over a semi-urban coastal environment. Journal of Atmospheric and Solar-Terrestrial Physics, 119, 211–222. https://doi.org/10.1016/j.jastp.2014.08.009

    Article  Google Scholar 

  • Aruna, K., Lakshmi Kumar, T. V., Krishna Murthy, B. V., Babu, S. S., Ratnam, M. V., & Rao, D. N. (2016). Short wave Aerosol Radiative Forcing estimates over a semi urban coastal environment in south-east India and validation with surface flux measurements. Atmospheric Environment, 125, 418–428. https://doi.org/10.1016/j.atmosenv.2015.08.085

    Article  Google Scholar 

  • Babu, S. S., & Moorthy, K. K. (2002). Aerosol black carbon over a tropical coastal station in India. Geophysical Research Letters, 29(23). https://doi.org/10.1029/2002GL015662

  • Barbato, J. P. (1975). The sea breeze of the Boston area and its effect on the urban atmosphere (p. 223). Ph.D. dissertation, Boston University Graduate School.

    Google Scholar 

  • Di Bernardino, A., Iannarelli, A. M., Casadio, S., Mevi, G., Campanelli, M., Casasanta, G., & Cacciani, M. (2021). On the effect of sea breeze regime on aerosols and gases properties in the urban area of Rome, Italy. Urban Climate, 37(September 2020), 100842. https://doi.org/10.1016/j.uclim.2021.100842

  • Boyouk, N., Léon, J. F., Delbarre, H., Augustin, P., & Fourmentin, M. (2011). Impact of sea breeze on vertical structure of aerosol optical properties in Dunkerque France. Atmospheric Research, 101(4), 902–910. https://doi.org/10.1016/j.atmosres.2011.05.016

    Article  Google Scholar 

  • Chen, X., Zhang, F., & Zhao, K. (2016). Diurnal variations of the land-sea breeze and its related precipitation over south China. Journal of the Atmospheric Sciences, 73(12), 4793–4815. https://doi.org/10.1175/JAS-D-16-0106.1

    Article  Google Scholar 

  • Davis, S. R., Farrar, J. T., Weller, R. A., Jiang, H., & Pratt, L. J. (2019). The land-sea breeze of the red sea: Observations, simulations, and relationships to regional moisture transport. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2019JD031007

  • Hamza, V., & Babu, C. A. (2007). Boundary layer characteristics associated with sea breeze circulation over Cochin. Mausam, 58(1), 75–86. https://doi.org/10.54302/mausam.v58i1.1134

  • Jeeva Prakash, J. W., Ramachandran, R., Nair, K. N., Sen Gupta, K., & Kunhikrishnan, P. K. (1992). On the structure of sea-breeze fronts observed near the coastline of Thumba India. Boundary-Layer Meteorology, 59(1–2), 111–124. https://doi.org/10.1007/BF00120689

    Article  Google Scholar 

  • KiranKumar, N. V. P., Jagadeesh, K., Niranjan, K., & Rajeev, K. (2019). Seasonal variations of sea breeze and its effect on the spectral behaviour of surface layer winds in the coastal zone near Visakhapatnam, India. Journal of Atmospheric and Solar-Terrestrial Physics, 186(August 2018), 1–7. https://doi.org/10.1016/j.jastp.2019.01.013

  • Lohar, B., Pal, B., & Chakravarty, B. (1994). Sea breeze activity at an in land station Kharagpur (India)—a case study. Boundary-Layer Meteorology, 67, 427–434.

    Article  Google Scholar 

  • Luchetti, N. T., Nieto Ferreira, R., Rickenbach, T. M., Nissenbaum, M. R., & McAuliffe, J. D. (2017). Influence of the North Atlantic subtropical high on wet and dry sea-breeze events in North Carolina, United States. Investigaciones Geográficas, 68, 9–25. https://doi.org/10.14198/INGEO2017.68.01

    Article  Google Scholar 

  • Manoj, M. R., Satheesh, S. K., Moorthy, K. K., Gogoi, M. M., & Babu, S. S. (2019). Decreasing trend in black carbon aerosols over the Indian Region. Geophysical Research Letters, 46(5), 2903–2910. https://doi.org/10.1029/2018GL081666

    Article  Google Scholar 

  • Masouleh, Z. P., Walker, D. J., & Crowther, J. M. C. (2019). A long-term study of sea-breeze characteristics: A case study of the coastal city of Adelaide. Journal of Applied Meteorology and Climatology, 58(2), 385–400. https://doi.org/10.1175/JAMC-D-17-0251.1

    Article  Google Scholar 

  • Masselink, G., & Pattiaratchi, C. (1998). Morphodynamic impact of sea breeze activity on a beach with beach cusp morphology. Journal of Coastal Research, 14(2), 393–406.

    Google Scholar 

  • Miller, S. T. K., & Keim, B. D. (2003). Synoptic-scale controls on the Sea Breeze of the central new England coast. Weather and Forecasting, 18(2), 236–248. https://doi.org/10.1175/1520-0434(2003)018%3c0236:SCOTSB%3e2.0.CO;2

    Article  Google Scholar 

  • Morys, M., Iii, F. M. M., Network, S. A., Tx, S., & Anderson, S. E. (2022). Design, calibration and performance of MICROTOPS II hand-held ozonometer Filter Ozonometers Limitations of Filter Ozonometers Total Ozone Portable Spectrometer ( TOPS ) Microprocessor-Controlled TOPS ( MicroTOPS )., (4).

  • Muppa, S. K., Anandan, V. K., Kesarkar, K. A., Rao, S. V. B., & Reddy, P. N. (2012). Study on deep inland penetration of sea breeze over complex terrain in the tropics. Atmospheric Research, 104–105, 209–216. https://doi.org/10.1016/j.atmosres.2011.10.007

    Article  Google Scholar 

  • Narayanan, V. (1967). An observational study of the Sea Breeze at an equatorial coastal station. Indian Journal of Meteorology & Geophysics, 18, 497–504.

    Google Scholar 

  • Physick, W. L., & Byron-Scott, R. A. D. (1977). Observations of the Sea Breeze in the Vicinity of a Gulf. Weather, 32(10), 373–381. https://doi.org/10.1002/j.1477-8696.1977.tb04481.x

    Article  Google Scholar 

  • Pokhrel, R., & Lee, H. (2011). Estimation of the effective zone of sea/land breeze in a coastal area. Atmospheric Pollution Research, 2(1), 106–115. https://doi.org/10.5094/APR.2011.013

    Article  Google Scholar 

  • Raju, M. P., Safai, P. D., Sonbawne, S. M., Buchunde, P. S., Pandithurai, G., & Dani, K. K. (2020). Black carbon aerosols over a high altitude station, Mahabaleshwar: Radiative forcing and source apportionment. Atmospheric Pollution Research, 11(8), 1408–1417. https://doi.org/10.1016/j.apr.2020.05.024

    Article  Google Scholar 

  • Ramachandran, S., Rajesh, T. A., & Cherian, R. (2021). Black carbon aerosols over source vs. background region: Atmospheric boundary layer influence, potential source regions, and model comparison. Atmospheric Research, 256(March), 105573. https://doi.org/10.1016/j.atmosres.2021.105573

  • Rani, S. I., Ramachandran, R., Subrahamanyam, D. B., Alappattu, D. P., & Kunhikrishnan, P. K. (2010). Characterization of sea/land breeze circulation along the west coast of Indian sub-continent during pre-monsoon season. Atmospheric Research, 95(4), 367–378. https://doi.org/10.1016/j.atmosres.2009.10.009

    Article  Google Scholar 

  • Ravi Kiran, V., Venkat Ratnam, M., Krishna Murthy, B. V., Kant, Y., Prasad, P., Roja Raman, M., & Maitra, A. (2019). An empirical method for source apportionment of black carbon aerosol: Results from Aethalometer observations at five different locations in India. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.07.100

    Article  Google Scholar 

  • Reddy, B. R., Srinivas, C. V., Shekhar, S. S. R., Baskaran, R., & Venkatraman, B. (2020). Impact of land surface physics in WRF on the simulation of sea breeze circulation over southeast coast of India. Meteorology and Atmospheric Physics, 132(6), 925–943. https://doi.org/10.1007/s00703-020-00726-5

    Article  Google Scholar 

  • Reddy, T. V. R., Mehta, S. K., Ananthavel, A., Ali, S., Annamalai, V., & Rao, D. N. (2021). Seasonal characteristics of sea breeze and thermal internal boundary layer over Indian east coast region. Meteorology and Atmospheric Physics, 133(2), 217–232. https://doi.org/10.1007/s00703-020-00746-1

    Article  Google Scholar 

  • Simpson, J. E. (1994). Sea breeze and local winds. Cambridge University Press.

    Google Scholar 

  • Srinivas, C. V., Venkatesan, R., Somayaji, K. M., & Bagavath Singh, A. (2006). A numerical study of sea breeze circulation observed at a tropical site Kalpakkam on the east coast of India, under different synoptic flow situations. Journal of Earth System Science, 115(5), 557–574. https://doi.org/10.1007/BF02702909

    Article  Google Scholar 

  • Srivastava, S., Kumar, M., Singh, R. S., Rai, B. N., Mall, R. K., & Banerjee, T. (2019). Long-term observation of black carbon aerosols at an urban location over the central Indo-Gangetic Plain, South Asia. Atmosfera, 32(2), 95–113. https://doi.org/10.20937/ATM.2019.32.02.02

  • Viner, B., Noble, S., Qian, J. H., Werth, D., Gayes, P., Pietrafesa, L., & Bao, S. (2021). Frequency and characteristics of inland advecting sea breezes in the Southeast United States. Atmosphere. https://doi.org/10.3390/atmos12080950

    Article  Google Scholar 

  • Wehner, B., Siebert, H., Ansmann, A., Ditas, F., Seifert, P., Stratmann, F., & Kulmala, M. (2010). Observations of turbulence-induced new particle formation in the residual layer. Atmospheric Chemistry and Physics, 10(9), 4319–4330. https://doi.org/10.5194/acp-10-4319-2010

    Article  Google Scholar 

  • Williams, M. A., Kumar, T. V. L., & Rao, D. N. (2019). Characterizing black carbon aerosols in relation to atmospheric boundary layer height during wet removal processes over a semi urban location. Journal of Atmospheric and Solar-Terrestrial Physics, 182, 165–176. https://doi.org/10.1016/j.jastp.2018.11.018

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out with data of instruments funded by ISRO—ARFI & MoES, Govt of India, under ESTC grant of Satellite Meteorology Cell.

Funding

Funding was received from the Ministry of Earth Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Lakshmi Kumar.

Ethics declarations

Conflict of interest

The authors of this manuscript do not have any conflict of interest in submitting to the journal Pure and Applied Geophysics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, M.A., Raj, K.N., Rajesh, A.N. et al. Identification of Sea Breeze Onset and Its Effect on Surface Black Carbon Aerosols Over a Tropical Coastal Environment (12.81°N, 80.03°E) in India. Pure Appl. Geophys. 179, 2993–3003 (2022). https://doi.org/10.1007/s00024-022-03102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03102-z

Keywords

Navigation