Skip to main content
Log in

Identification of Small Old Shafts Locations and a Proposal for Their Protection

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The issues related to threats to human safety in post-mining areas are important. This article delineates such threats, focusing mainly on the problem of sinkholes emerging above small old shafts. Small shafts are understood as excavations, most often with a rectangular cross section and a side of 1–3 m and a depth ranging from several meters to several dozen meters. The difficulties with locating small shafts have often been associated with the lack of complete geological and mining documentation. Having gained access to the geological and mining documentation concerning mining activities conducted in the nineteenth century, field research was carried out. LIDAR technology has been proposed as a means of initial evaluation of an area together with a thermal imaging camera to assess if the sinkholes had been formed due to past mining activities. Preliminary results of the study suggest that infrared mapping could be used as a method that could to some extent limit the time-consuming and laborious geophysical studies. The work uses Bell’s formula and a numerical method to assess the degree of threat of sinkhole formation on the surface area. According to the results of the studies described in the literature as well as the author’s professional experience, the most common cause of the surface hazards in post-mining regions is the lowering of the backfilling material in shafts. Precipitation has a significant impact on such behaviour of backfill. Therefore, this paper proposes methods of isolating shaft’s backfilling column from precipitation water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Bell, F. G. (1988). Land development. State of the art in location of old mine shafts. Bulletin of the International Association of Engineering Geology, 37, 91–98. https://doi.org/10.1007/BF02590374

    Article  Google Scholar 

  • Bell, F. G., & Donnelly, L. J. (2006). Mining and its impact on the environment. CRC Press.

    Book  Google Scholar 

  • Bell, F. G., Stacey, T. R., & Genske, D. D. (2000). Mining subsidence and its effect on the environment: Some differing examples. Environmental Geology, 40, 135–152. https://doi.org/10.1007/s002540000140

    Article  Google Scholar 

  • Chudek, M., Janusz, W., & Zych, J. (1988). Studium dotyczące stanu rozpoznania tworzenia się i prognozowania deformacji nieciągłych pod wpływem podziemnej eksploatacji złóż. Zeszyty Naukowe Politechniki Śląskiej, seria Górnictwo (Vol. 141). Dział Wydawnictw Politechniki Śląskiej. In Polish.

    Google Scholar 

  • Czaja, P. (2009). Ocena rozwiązań projektowych likwidacji szybw zastosowanych w procesie restrukturyzacji polskiego górnictwa węglowego. Górnictwo i Geoinżynieria, 3(1), 105–119. In Polish.

    Google Scholar 

  • Czaja, P. (2011). Technologie likwidacji szybów oraz ich infastruktury podziemnej i powierzchniowej. Wydawnictwo AGH. In Polish.

    Google Scholar 

  • Didier, C. (2009). Post mining management in France: Situation and perspectives. Risk Analysis, 29(10), 1347–1354. https://doi.org/10.1111/j.1539-6924.2009.01258.xineris-0096194

    Article  Google Scholar 

  • Dong, P., & Chen, Q. (2018). LIDAR remote sensing and applications. CRC Press. Taylor & Francis Group.

    Google Scholar 

  • Dziurzyński, W., Krach, A., Krawczyk, J., & Pałka, T. (2004). Migracja gazów z szybu zlikwidowanej kopalni. Mat. 3 Szkoły Aerologii Górniczej, Zakopane 12–15.10.04, 2004, 167–180 (in Polish).

  • Frużyński, A. (2012). Kopalnie węgla kamiennego w Polsce. Wyd. Księży Młyn. Łódź, 2012, (in Polish).

  • Hunter, J. (2015). Old mines and new sinkholes along the Hucklow Edge vein, Derbyshire. American Geologist, 18(4), 213–226.

    Google Scholar 

  • Kidybiński, A. (1982). Podstawy geotechniki kopalnianej. Wydawnictwo ‘Śląsk.’ In Polish.

    Google Scholar 

  • Kotyrba, A., & Kortas, Ł. (2016). Sinkhole hazard assessment in the area of abandoned mining shaft basing on microgravity survey and modelling—case study from the Upper Silesia Coal Basin in Poland. Journal of Applied Geophysics., 130, 62–70. https://doi.org/10.1016/j.jappgeo.2016.04.007

    Article  Google Scholar 

  • Kretschmann, J., Efremenkov, A. B., & Khoreshok, A. A. (2017). From mining to post-mining: The sustainable development strategy of the German hard coal mining industry. IOP Conference Series: Earth and Environmental Science, 50, 012024.

    Google Scholar 

  • Lagny, C. (2014). The emissions of gases from abandoned mines: Role of atmospheric pressure changes and air temperature on the surface. Environment and Earth Science, 71, 923. https://doi.org/10.1007/s12665-013-2495-8

    Article  Google Scholar 

  • Lecomte, A., & Munos Niharra, A. (2013). Handbook to best practices for mine shaft protection. Research Programme of the Research Fund for Coal and Steel. Mine shafts: improving security and new tools for the evaluation of risks. https://news-24212-ineris-guide-bonnes-pratiques-securite-puitsdeminee.pdf

  • Lee, E. J., Shin, S. Y., Ko, B. C., & Chang, C. (2016). Early sinkhole detection using a drone-based thermal camera and image processing. Infrared Physics & Technology, 78, 223–232. https://doi.org/10.1016/j.infrared.2016.08.009

    Article  Google Scholar 

  • Liu, W., Liu, S., Tang, C., Qin, W., Pan, H., & Zhang, J. (2020). Evaluation of surface water quality after mine closure in the coal-mining region of Guizhou, China. Environmental Earth Sciences, 79, 427. https://doi.org/10.1007/s12665-020-09167-0

    Article  Google Scholar 

  • Maxwell, G. M. (1976). Old mine shafts and their location by geophysical surveying. Quarterly Journal of Engineering Geology and Hydrogeology, 9, 283–290. https://doi.org/10.1144/GSL.QJEG.1976.009.04.01

    Article  Google Scholar 

  • Miao, X., Qiu, X., Wu, S.-S., Luo, J., Gouzie, D. R., & Xie, H. (2013). Developing efficient procedures for automated sinkhole extraction from lidar DEMs. Photogrammetric Engineering and Remote Sensing, 79(6), 545–554.

    Article  Google Scholar 

  • Nádudvari, Á., Abramowicz, A., Fabiańska, M., Misz-Kennan, M., & Ciesielczuk, J. (2020). Classification of fires in coal waste dumps based on Landsat Aster thermal bands and thermal camera in Polish and Ukrainian mining regions. International Journal of Coal Science and Technology. https://doi.org/10.1007/s40789-020-00375-4

    Article  Google Scholar 

  • Piechota, S. (2003). Basic principles and technologies for exploitation of solid minerals. Library of the School of Underground Mining. In Polish.

    Google Scholar 

  • Ramos, E. P., Breede, K., & Falcone, G. (2015). Geothermal heat recovery from abandoned mines: a systematic review of projects implemented worldwide and a methodology for screening new projects. Environmental Earth Sciences, 73, 6783–6795. https://doi.org/10.1007/s12665-015-4285-y

    Article  Google Scholar 

  • Salmon, R., Marshall, A., Bock, S., Madrza, A., Rapp, S., MuniosNiharra, A., & Bedford, M. (2015). Research fund for coal and steel. Mine shafts: Improving security and new tools for the evaluation of risk. Final report. European Commission. Publications Office of the European Union.

    Google Scholar 

  • Schuchová, K., & Lenart, J. (2020). Geomorphology of old and abandoned underground mines: Review and future challenges. Progress in Physical Geography Earth and Environment. https://doi.org/10.1177/0309133320917314

    Article  Google Scholar 

  • Strzałkowski, P. (2021). Sinkhole hazard caused by inactive mining shafts as illustrated by a selected example. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-021-02716-z

    Article  Google Scholar 

  • Strzałkowski, P., Ścigała, R., Szafulera, K., & Kołodziej, K. (2021). Surface deformations resulting from abandoned mining excavations. Energies. https://doi.org/10.3390/en14092495

    Article  Google Scholar 

  • Whittaker, B. N., & Reddish, D. J. (1989). Subsidence occurrence, prediction and control. Developments in geotechnical engineering. Elsevier.

    Google Scholar 

  • Wirth, P., Cernic, M. B., & Fischer, W. (2012). Post-mining regions in Central Europe. Oekom Verlag.

    Google Scholar 

  • Wróbel, A., & Ortyl, Ł. (2007). Georadarowa i termowizyjna metoda pozyskiwania geodanych o pustkach podpowierzchniowych. Archiwum Fotogrametrii Kartografii i Teledetekcji, 17, 821–830. In Polish.

    Google Scholar 

  • Wu, Q., Deng, C., & Chen, Z. (2016). Automated delineation of karst sinkholes from LiDAR derived digital elevation models. Geomorphology, 266, 1–10. https://doi.org/10.1016/j.geomorph.2016.05.006

    Article  Google Scholar 

  • Zhang, S., Bogus, S., Baros, S., Neville, P., & Dow, R. (2019). Karst sinkhole detecting and mapping using airborne LiDAR—a conceptual framework. MATEC Web of Conferences, 271, 02005. https://doi.org/10.1051/matecconf/201927102005

    Article  Google Scholar 

Download references

Acknowledgements

The author thankfully acknowledges the Silesian University of Technology, Poland, for providing all the facilities to perform the research work.

Funding

The article has been written as a result of a research project 06/040BK_20/0102 financed by Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation from the funds of the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Contributions

I declare that I am the only author of the above article and all those who contributed to its creation have been credited in the text and references.

Corresponding author

Correspondence to Piotr Strzałkowski.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strzałkowski, P. Identification of Small Old Shafts Locations and a Proposal for Their Protection. Pure Appl. Geophys. 179, 2889–2904 (2022). https://doi.org/10.1007/s00024-022-03093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03093-x

Keywords

Navigation