Abstract
The variations in vegetation coverage (defined as the area with Normalised Difference Vegetation Index (NDVI) > 0.2) and atmospheric patterns occurring during various vegetation seasons in the Kabul River Basin (KRB) in Afghanistan during 2001–2019 were analyzed. The analysis was done based on the NDVI, land surface temperature (LST), precipitation images from the remote sensing data, and geopotential height and temperature at 500 hPa from the retrospective datasets. The results revealed that the vegetation dynamics in KRB are impacted by both precipitation and LST. In the winter season, the LST has a more substantial role in shaping the vegetation dynamics than precipitation, while it is on contrary during the summer season. Cluster analysis showed that the four atmospheric patterns (e.g., Sub-Tropical High Pressure (STHP), Western European ridge-the Eastern Mediterranean and the Black Sea trough, Caspian Sea ridge (CSR), and the Mediterranean Sea trough-Central to Eastern Iran trough) can be identified and connected with the periods with the highest and the lowest vegetation coverage (VC) anomalies in the study area. The CSR and the Mediterranean Sea trough-the Central to Eastern Iran trough are the patterns responsible for the most positive VC anomalies. At the same time, the STHP and Western Europe ridge-the Eastern Mediterranean and the Black Sea trough are responsible for the most negative VC anomalies. As the atmospheric patterns have a significant role in shaping the vegetation status, a quick alert system to prevent agricultural areas from water or temperature stresses can be developed based on observations of them.
This is a preview of subscription content, access via your institution.








References
Agrawal, S., Joshi, P. K., Shukla, Y., & Roy, P. S. (2003). SPOT vegetation multi temporal data for classifying vegetation in South Central Asia. Current Science, 84, 1440–1448.
Ahmad, W., Khan, A. U., Khan, F. A., Farooq, M., Baig, A. A., Shah, L. A., & Khan, J. (2020). How vegetation spatially alters the response of precipitation and air temperature? Evidence from Pakistan. Asian Journal of Atmospheric Environment, 14, 133–145.
Akhtar, F. (2017). Water availability and demand analysis in the Kabul River Basin, Afghanistan. Universitäts- und Landesbibliothek Bonn. https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7031.
Akhtar, F., Awan, U. K., Tischbein, B., & Liaqat, U. W. (2018). Assessment of irrigation performance in large river basins under data scarce environment—A case of Kabul River Basin Afghanistan. Remote Sensing, 10, 972. https://doi.org/10.3390/rs10060972
Alijani, B., O’Brien, J., & Yarnal, B. (2008). Spatial analysis of precipitation intensity and concentration in Iran. Theoretical and Applied Climatology, 94, 107–124. https://doi.org/10.1007/s00704-007-0344-y
Banks, D., & Soldal, O. (2002). Towards a policy for sustainable use of groundwater by non-governmental organisations in Afghanistan. Hydrogeology Journal, 10, 377–392. https://doi.org/10.1007/s10040-002-0203-y
Barbosa, H. A., Huete, A. R., & Baethgen, W. E. (2006). A 20-year study of NDVI variability over the Northeast Region of Brazil. Journal of Arid Environments, 67, 288–307. https://doi.org/10.1016/j.jaridenv.2006.02.022
Barbosa, H. A., Lakshmi Kumar, T. V., & Silva, L. R. M. (2015). Recent trends in vegetation dynamics in the South America and their relationship to rainfall. Natural Hazards, 77, 883–899. https://doi.org/10.1007/s11069-015-1635-8
Bhuiyan, C., & Kogan, F. N. (2010). Monsoon variation and vegetative drought patterns in the Luni Basin in the rain-shadow zone. International Journal of Remote Sensing, 31, 3223–3242. https://doi.org/10.1080/01431160903159332
Chen, Z., Wang, W., & Fu, J. (2020). Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Science and Reports, 10, 830. https://doi.org/10.1038/s41598-020-57910-1
Coops, N. C., Wulder, M. A., & Iwanicka, D. (2009). Large area monitoring with a MODIS-based Disturbance Index (DI) sensitive to annual and seasonal variations. Remote Sensing of Environment, 113, 1250–1261. https://doi.org/10.1016/j.rse.2009.02.015
Davenport, M. L., & Nicholson, S. E. (1993). On the relation between rainfall and the Normalized Difference Vegetation Index for diverse vegetation types in East Africa. International Journal of Remote Sensing, 14, 2369–2389. https://doi.org/10.1080/01431169308954042
Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S. J., & Ropelewski, C. F. (2007). Validation of satellite rainfall products over East Africa’s complex topography. International Journal of Remote Sensing, 28, 1503–1526. https://doi.org/10.1080/01431160600954688
Duan, Z., & Bastiaanssen, W. G. M. (2013). First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sensing of Environment, 131, 1–13. https://doi.org/10.1016/j.rse.2012.12.002
Fang, J., Du, J., Xu, W., Shi, P., Li, M., & Ming, X. (2013). Spatial downscaling of TRMM precipitation data based on the orographical effect and meteorological conditions in a mountainous area. Advances in Water Resources, 61, 42–50. https://doi.org/10.1016/j.advwatres.2013.08.011
Ghafarian Malamiri, H. R., Rousta, I., Olafsson, H., Zare, H., & Zhang, H. (2018). Gap-filling of MODIS time series Land Surface Temperature (LST) products using Singular Spectrum Analysis (SSA). Atmosphere, 9, 334. https://doi.org/10.3390/atmos9090334
GlobLand30 (2016). http://glc30.tianditu.com/.
Houben, G., Niard, N., Tünnermeier, T., & Himmelsbach, T. (2009). Hydrogeology of the Kabul Basin (Afghanistan), part I: Aquifers and hydrology. Hydrogeology Journal, 17, 665–677. https://doi.org/10.1007/s10040-008-0377-z
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55. https://doi.org/10.1175/JHM560.1
Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114, 504–513. https://doi.org/10.1016/j.rse.2009.10.008
Julien, Y., & Sobrino, J. A. (2009). The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote Sensing of Environment, 113, 329–334. https://doi.org/10.1016/j.rse.2008.09.016
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., … Dennis, J. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–472.
Kumar, D., & Shekhar, S. (2015). Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing. Ecotoxicology and Environmental Safety, 121, 39–44. https://doi.org/10.1016/j.ecoenv.2015.07.004
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package. The Journal of Atmospheric and Oceanic Technology, 15, 809–817. https://doi.org/10.1175/1520-0426(1998)015%3c0809:TTRMMT%3e2.0.CO;2
Lakshmi Kumar, T. V., Koteswara Rao, K., Barbosa, H., & Prabha Jothi, E. (2013). Studies on spatial pattern of NDVI over Indiaand its relationship with rainfall, air temperature, soil moisture adequacy and ENSO. Geofizika, 30, 1–18.
Lambin, E. F., & Ehrlich, D. (1995). Combining vegetation indices and surface temperature for land-cover mapping at broad spatial scales. International Journal of Remote Sensing, 16, 573–579. https://doi.org/10.1080/01431169508954423
Lashkaripour, G. R., & Hussaini, S. A. (2008). Water resource management in Kabul River Basin, eastern Afghanistan. The Environmentalist, 28, 253–260. https://doi.org/10.1007/s10669-007-9136-2
Liou, Y.-A., & Mulualem, G. M. (2019). Spatio–temporal assessment of drought in Ethiopia and the impact of Rrecent intense droughts. Remote Sensing, 11, 1828. https://doi.org/10.3390/rs11151828
Liu, S., Yan, D., Shi, X., Wang, G., Yuan, Z., & Yin, J. (2013). Grassland NDVI response to climate factors in different vegetation regionalizations in China. in Geo-Informatics in Resource Management and Sustainable Ecosystem Communications in Computer and Information Science., eds. F. Bian, Y. Xie, X. Cui, & Y. Zeng (Berlin, Heidelberg: Springer), 370–380. https://doi.org/10.1007/978-3-642-41908-9_38.
Mack, T. J., Chornack, M. P., & Taher, M. R. (2013). Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan. Environment System and Decisions, 33, 457–467. https://doi.org/10.1007/s10669-013-9455-4
Mainuddin, M., Peña-Arancibia, J. L., Karim, F., Hasan, M. M., Mojid, M. A., & Kirby, J. M. (2022). Long-term spatio-temporal variability and trends in rainfall and temperature extremes and their potential risk to rice production in Bangladesh. PLOS Climate, 1, e0000009.
Malo, A. R., & Nicholson, S. E. (1990). A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index. Journal of Arid Environments, 19, 1–24. https://doi.org/10.1016/S0140-1963(18)30825-5
Mandal, G., & Joshi, S. P. (2014). Analysis of vegetation dynamics and phytodiversity from three dry deciduous forests of Doon Valley, Western Himalaya, India. Journal Asia-Pacific Biodiversity, 7, 292–304. https://doi.org/10.1016/j.japb.2014.07.006
Marzban, F., Sodoudi, S., & Preusker, R. (2018). The influence of land-cover type on the relationship between NDVI–LST and LST-Tair. International Journal of Remote Sensing, 39, 1377–1398. https://doi.org/10.1080/01431161.2017.1402386
Mildrexler, D. J., Zhao, M., Heinsch, F. A., & Running, S. W. (2007). A new satellite-based methodology for continental-scale disturbance detection. Ecological Applications, 17, 235–250. https://doi.org/10.1890/1051-0761(2007)017[0235:ANSMFC]2.0.CO;2
Mushore, T. D., Dube, T., Manjowe, M., Gumindoga, W., Chemura, A., Rousta, I., Odindi, J., & Mutanga, O. (2019). Remotely sensed retrieval of Local Climate Zones and their linkages to land surface temperature in Harare metropolitan city, Zimbabwe. Urban Climate, 27, 259–271. https://doi.org/10.1016/j.uclim.2018.12.006
Najmuddin, O., Qamer, F. M., Gul, H., Zhuang, W., & Zhang, F. (2021). Cropland use preferences under land, water and labour constraints—implications for wheat self-sufficiency in the Kabul River basin, Afghanistan. Food Security, 1–25.
Najmuddin, O., Deng, X., & Siqi, J. (2017). Scenario analysis of land use change in Kabul River Basin—A river basin with rapid socio-economic changes in Afghanistan. Physics and Chemistry of the Earth Parts ABC, 101, 121–136. https://doi.org/10.1016/j.pce.2017.06.002
Nemani, R., & Running, S. (1997). Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecological Applications, 7, 79–90. https://doi.org/10.1890/1051-0761(1997)007[0079:LCCUMR]2.0.CO;2
NRVA (2009). National Risk and Vulnerability Assessment 2007/2008: A profile of Afghanistan. Kabul, Afghanistan: ICON-INSTITUTE.
Olafsson, H., & Rousta, I. (2021). Influence of atmospheric patterns and North Atlantic Oscillation (NAO) on vegetation dynamics in Iceland using Remote Sensing. European Journal of Remote Sensing, 54, 351–363.
Patel, N. R., Chopra, P., & Dadhwal, V. K. (2007). Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications, 14, 329–336. https://doi.org/10.1002/met.33
Peña-Arancibia, J. L., Mahboob, M. G., Islam, A. T., Mainuddin, M., Yu, Y., Ahmad, M. D., Murad, K. F. I., Saha, K. K., Hossain, A., & Moniruzzaman, M. (2021). The Green Revolution from space: Mapping the historic dynamics of main rice types in one of the world’s food bowls. Remote Sensing Applications: Society and Environment, 21, 100460.
Pervez, M. S., Budde, M., & Rowland, J. (2014). Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sensing of Environment, 149, 11. https://doi.org/10.1016/j.rse.2014.04.008
Propastin, P., Kappas, M., Erasmi, S., & Muratova, N. R. (2007). Remote sensing based study on intra-annual dynamics of vegetation and climate in drylands of Kazakhastan. Basic and Applied Dryland Research. https://doi.org/10.1127/badr/1/2007/138
Raja, R., Nayak, A. K., Panda, B. B., Lal, B., Tripathi, R., Shahid, M., Kumar, A., Mohanty, S., Samal, P., Gautam, P., & Rao, K. S. (2014). Monitoring of meteorological drought and its impact on rice (Oryza sativa L.) productivity in Odisha using standardized precipitation index. Archives of Agronomy and Soil Science, 60, 1701–1715.
Reboita, M. S., Ambrizzi, T., Silva, B. A., Pinheiro, R. F., & da Rocha, R. P. (2019). The South Atlantic Subtropical Anticyclone: Present and future climate. Frontiers in Earth Science, 7, 8. https://doi.org/10.3389/feart.2019.00008
Regmi, R., Ma, Y., Ma, W., Baniya, B., & Bashir, B. (2020). Interannual variation of NDVI, precipitation and temperature during the Growing Season in Langtang National Park, Central Himalaya, Nepal. Applied Ecology and Environmental Sciences, 8, 218–228. https://doi.org/10.12691/aees-8-5-5
Rousta, I., Javadizadeh, F., Dargahian, F., Ólafsson, H., Shiri-Karimvandi, A., Vahedinejad, S. H., Doostkamian, M., Vargas, E. R. M., & Asadolahi, A. (2018). Investigation of vorticity during prevalent winter precipitation in Iran. Advances in Meteorology, 2018, e6941501. https://doi.org/10.1155/2018/6941501
Rousta, I., Olafsson, H., Moniruzzaman, M., Ardö, J., Zhang, H., Mushore, T. D., Shahin, S., & Azim, S. (2020a). The 2000–2017 drought risk assessment of the western and southwestern basins in Iran. Model Earth Systems and Environment, 6, 1201–1221.
Rousta, I., Olafsson, H., Moniruzzaman, M., Zhang, H., Liou, Y.-A., Mushore, T. D., & Gupta, A. (2020b). Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Journal of Remote Sensing, 12, 2433.
Roy, D. P., Jin, Y., Lewis, P. E., & Justice, C. O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97, 137–162. https://doi.org/10.1016/j.rse.2005.04.007
Sarma, A. A. L. N., & Kumar, T. V. L. (2006). Studies on crop growing period and NDVI in relation to water balance components. Indian Journal of Radio & Space Physics, 35, 424–434.
Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J., & Rango, A. (2002). Remote sensing in hydrology. Advances in Water Resources, 25, 1367–1385. https://doi.org/10.1016/S0309-1708(02)00065-9
Shilong, P., Jingyun, F., Wei, J., Qinghua, G., Jinhu, K., & Shu, T. (2004). Variation in a satellite-based Vegetation Index in relation to climate in China. Journal of Vegetation Science, 15, 219–226.
Simpson, J., Kummerow, C., Tao, W.-K., & Adler, R. F. (1996). On the Tropical Rainfall Measuring Mission (TRMM). Meteorology and Atmospheric Physics, 60, 19–36. https://doi.org/10.1007/BF01029783
Sobrino, J., Jiménez-Muñoz, J., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440. https://doi.org/10.1016/j.rse.2004.02.003
Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M. M., Molanejad, M., Sabziparvar, A. A., Ranjbar SaadatAbadi, A., Ranjbar, F., Rousta, I., Zawar-Reza, P., Khoshakhlagh, F., Soltanzadeh, I., Babu, C. A., Azizi, G. H., & Martin, M. V. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology, 126, 775–795. https://doi.org/10.1007/s00704-015-1609-5
Sun, D., & Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters. https://doi.org/10.1029/2007GL031485
Tayyebi, A., & Jenerette, G. D. (2016). Increases in the climate change adaption effectiveness and availability of vegetation across a coastal to desert climate gradient in metropolitan Los Angeles, CA, USA. Science of the Total Environment, 548, 60–71.
USDA, F. (2011). Unites States Department of Agriculture Foreign Agricultural Service, Global Agricultural Trade System (GATS), Forest products trade statistics. J Acces.
Viola, M., Najimi, F. K., & Bacon, B. (2007). Afghanistan Food Security Conditions and Causes. United States Agency for International Development Famine Early Warning Systems Network (FEWS NET).
Wan, Z., & Dozier, J. (1996). A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34, 892–905. https://doi.org/10.1109/36.508406
Wan, Z., Zhang, Y., Zhang, Q., & Li, Z.-L. (2004). Quality assessment and validation of the MODIS global Land Surface Temperature. International Journal of Remote Sensing, 25, 261–274. https://doi.org/10.1080/0143116031000116417
WB (2010). Afghanistan - Scoping strategic options for development of the Kabul River Basin: a multisectoral decision support system approach. World Bank. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/319391468185978566/Afghanistan-Scoping-strategic-options-for-development-of-the-Kabul-River-Basin-a-multisectoral-decision-support-system-approach.
WHO (2009). Country profile: Afghanistan. World Health Organization.
Wilkinson, C. R. (1996). Global change and coral reefs: Impacts on reefs, economies and human cultures. Global Change Biology, 2, 547–558. https://doi.org/10.1111/j.1365-2486.1996.tb00066.x
Zarrin, A., Ghaemi, H., Azadi, M., & Farajzadeh, M. (2010). The spatial pattern of summertime subtropical anticyclones over Asia and Africa: A climatological review. International Journal of Climatology, 30, 159–173. https://doi.org/10.1002/joc.1879
Zhang, Q., Shi, P., Singh, V. P., Fan, K., & Huang, J. (2017). Spatial downscaling of TRMM-based precipitation data using vegetative response in Xinjiang, China. International Journal of Climatology, 37, 3895–3909. https://doi.org/10.1002/joc.4964
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., Reed, B. C., & Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84, 471–475. https://doi.org/10.1016/S0034-4257(02)00135-9
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., & Liu, Z. (2005). Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2004JD005263
Acknowledgements
Iman Rousta is deeply grateful to his supervisor, Haraldur Olafsson (Professor of Atmospheric Sciences, Institute for Atmospheric Sciences-Weather and Climate, and Department of Physics, University of Iceland, and Icelandic Meteorological Office (IMO)), for his great support, kind guidance, and encouragement.
Funding
This work was supported by Vedurfelagid, Rannis and Rannsoknastofa i vedurfraedi. J.K. and P.B. have been partly financed by the Polish National Centre for Research and Development within the framework of the MSINiN project (contract number: BIOSTRATEG3/343547/8/NCBR/2017).
Author information
Authors and Affiliations
Contributions
Conceptualization, IR; methodology, software, data curation, validation, formal analysis, IR, MM, HO, and HZ; writing—original draft preparation IR, MM, HO, and HZ; enhancing the research design and analysis IR, PB, PT, HL, AK, and JK; writing—review and editing JK and PB All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rousta, I., Moniruzzaman, M., Olafsson, H. et al. Investigation of the Vegetation Coverage Dynamics and its Relation to Atmospheric Patterns in Kabul River Basin in Afghanistan. Pure Appl. Geophys. 179, 3075–3094 (2022). https://doi.org/10.1007/s00024-022-03044-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00024-022-03044-6
Keywords
- Vegetation coverage
- remote sensing
- atmospheric patterns
- agricultural areas
- cluster analysis
- MODerate resolution imaging spectroradiometer