Skip to main content
Log in

Validation of NCUM Model Forecasts Against FAAM Aircraft Observations Over Monsoon Trough Region: A Diagnostic Case Study

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study assesses the characteristics of atmospheric boundary layer (ABL) between Facility for Airborne Atmospheric Measurements (FAAM) aircraft observations and NCMRWF Unified Model (NCUM) forecasts on 07 July 2016. On this day the flight was operated over monsoon trough region. Two model forecasts data are utilized (global-17 km; regional-4 km) at a lead time of day-1 to day-3. The chosen variables are boundary layer height (Zi) in km, wind speed (WS) in m s−1, vertical velocity (w) in m s−1, water vapor mixing ratio (r) in g kg−1, and temperature (T) in oC. Special emphasis is given to the evolution of the ABL and peak of low-level jet (LLJ). Results suggest that both the models have noticed warm biases for T, wet biases for r, and negative biases for w. On the other hand, WS found to have negative (positive) biases during the straight level (profile) runs. Point-by-point correlations suggest that T, and r are in good agreement (R >  = 0.94), and moderate agreement (ranges from 0.66 to 0.77) for WS, whereas the vertical velocities are poorly predicted (R < 0.2). Strikingly, the correlations (biases) are dropped (increased) with lead time in two models. Small improvements in the statistics (R, bias) are noticed when the model resolution changes from 17 to 4 km. Both models can identify the observed evolution of the ABL; however, Zi values are slightly lower in models compared to observations. Interestingly, the Zi values are slightly dropped (100–200 m) from day-1 to day-3 forecast in two models. The peak of LLJ follows clear time variation, and its height is decreased with forecast lead time. Wind speeds below (above) the ABL height increases (decreases) with lead time, respectively. By considering all flight points across the flight track, the mean Zi is 100–500 m higher in the global model compared to the regional model. The noticed differences between two model ABL heights are discussed in the light of soil moisture conditions, fluxes, temperature advection, and static stability. Overall, a good correspondence is seen between FAAM observations and model forecasts, whereas the regional forecasts have better agreements in predicting ABL characteristics (10–20%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baklanov, A. A., Grisogono, B., Bornstein, R., Mahrt, L., Zilitinkevich, S. S., Taylor, P., Larsen, S. E., Rotach, M. W., & Fernando, H. J. S. (2011). The nature, theory, and modeling of atmospheric planetary boundary layers. Bulletin of the American Meteorological Society, 92(2), 123–128. https://doi.org/10.1175/2010BAMS2797.1

    Article  Google Scholar 

  • Barton, E. J., Taylor, C. M., Parker, D. J., Turner, A. G., Belusic, D., Böing, S. J., Brooke, J. K., Harlow, R. C., Harris, P. P., Hunt, K., Jayakumar, A., & Mitra, A. K. (2019). A case-study of land–atmosphere coupling during monsoon onset in northern India. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3538

    Article  Google Scholar 

  • Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., M´enard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., Harding, R. J. (2011). The Joint UK Land Environment Simulator (JULES), model description–Part 1: Energy and water fluxes. Geoscientific Model Development., 4, 677–699. www.geosci-model-dev.net/4/677/2011/doi:10.5194/gmd-4-677-2011.

  • Boutle, I. A., Eyre, J. E. J., & Lock, A. P. (2014). Seamless stratocumulus simulation across the turbulent gray zone. Monthly Weather Review, 142(4), 1655–1668. https://doi.org/10.1175/MWR-D-13-00229.1

    Article  Google Scholar 

  • Budakoti, S., & Singh, C. (2021). Examining the characteristics of planetary boundary layer height and its relationship with atmospheric parameters over Indian sub-continent. Atmospheric Research, 264, 105854. https://doi.org/10.1016/j.atmosres.2021.105854

    Article  Google Scholar 

  • Castelli, F., Entekhabi, D., & Caporali, E. (1999). Estimation of surface heat flux and index of soil moisture using adjoint-state surface energy balance. Water Resources Research, 35, 3115–3125. https://doi.org/10.1029/1999WR900140

    Article  Google Scholar 

  • Chandra, S., Dwivedi, A. K., & Kumar, M. (2014). Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India. Journal of Earth System Science, 123, 1233–1240. https://doi.org/10.1007/s12040-014-0458-4

    Article  Google Scholar 

  • Choudhury, A. D., & Krishnan, R. (2011). Dynamical response of the south Asian monsoon trough to latent heating from stratiform and convective precipitation. Journal of Atmospheric Science, 68, 1347–1363. https://doi.org/10.1175/2011JAS3705.1

    Article  Google Scholar 

  • Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth1, E., Boucher, O., Harding, R. J., Huntingford, C., & Cox, P. M. (2011). The Joint UK Land Environment Simulator (JULES), model description–Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4, 701–722. www.geosci-model-dev.net/4/701/2011/doi:10.5194/gmd-4-701-2011.

  • Das, P. K. (1986). Monsoons. Fifth IMO lecture. WMO 613, 155 pp.

  • Garratt, J. R. (1992). The atmospheric boundary layer (p. 316). Cambridge University Press.

    Google Scholar 

  • Goel, M., & Srivastava, H. N. (1990). Monsoon trough boundary layer experiment (MONTBLEX). Mausam (new Delhi), 41(2), 209–212.

    Google Scholar 

  • Gregory, D., & Rowntree, P. R. (1990). A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Monthly Weather Review, 118(7), 1483–1506. https://doi.org/10.1175/1520-0493(1990)118%3c1483:AMFCSW%3e2.0.CO;2

    Article  Google Scholar 

  • Hersbach, H., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Holt, T., & Raman, S. (1987). A study of mean boundary-layer structures over the Arabian Sea and the Bay of Bengal during active and break monsoon periods. Boundary-Layer Meteorology, 38, 73–94. https://doi.org/10.1007/BF00121556

    Article  Google Scholar 

  • Hunt, K. M. R., Turner, A. G., Inness, P. M., Parker, D. M., & Levine, R. C. (2016). On the structure and dynamics of Indian monsoon depressions. Mon. Wea. Rev., 144, 3391–3416. https://doi.org/10.1175/MWR-D-15-0138.1.

    Article  Google Scholar 

  • Joseph, P. V., & Sijikumar, S. (2004). Intraseasonal variability of the low-level jet stream of the Asian summer monsoon. Journal of Climate, 17(7), 1449–1458. https://doi.org/10.1175/1520-0442(2004)017%3c1449:IVOTLJ%3e2.0.CO;2

    Article  Google Scholar 

  • Korhonen, K., Giannakaki, E., Mielonen, T., Pfüller, A., Laakso, L., Vakkari, V., Baars, H., Engelmann, R., Beukes, J. P., Van Zyl, P. G., Ramandh, A., Ntsangwane, L., Josipovic, M., Tiitta, P., Fourie, G., Ngwana, I., Chiloane, K., & Komppula, M. (2014). Atmospheric boundary layer top height in South Africa: Measurements with lidar and radiosonde compared to three atmospheric models. Atmospheric Chemistry and Physics, 14(8), 4263–4278. https://doi.org/10.5194/acp-14-4263-2014

    Article  Google Scholar 

  • Kumar, S., Jayakumar, A., Bushair, M.T., Buddhi Prakash, J., George, G., Lodh, A., Indira Rani, S., Mohandas, S., George, J.P., & Rajagopal, E.N. (2018). Implementation of high resolution NCUM- Analysis-Forecast system in Mihir HPCS. NCMRWF Technical Report. NMRF/TR/01/2018, Aug. 2018, National Centre for Medium Range Weather Forecasting, Min. of Earth Sciences, Noida. 17 pp.

  • Kusuma, G. R., Raman, S., & Prabhu, A. (1991). Boundary-layer heights over the monsoon trough region during active and break phases. Boundary-Layer Meteorology, 57(1–2), 129–138. https://doi.org/10.1007/BF00119716

    Article  Google Scholar 

  • LeMone, M. A., Angevine, W. M., Bretherton, C. S., Chen, F., Dudhia, J., Fedorovich, E., Katsaros, K. B., Lenschow, D. H., Mahrt, L., Patton, E. G., Sun, J., Tjernström, M., & Weil, J. (2018). 100 years of progress in boundary layer meteorology. Meteorological Monographs, 59, 9.1-9.85. https://doi.org/10.1175/amsmonographs-d-18-0013.1

    Article  Google Scholar 

  • Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., & Smith, R. N. B. (2000). A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly Weather Review, 128(9), 3187–3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

  • Mandal, V., De, U. K., & Basu, B. K. (2007). Precipitation forecast verification of the Indian Summer Monsoon with Intercomparison of Three Diverse Regions. Weather and Forecasting, 22(3), 428–443. https://doi.org/10.1175/WAF1010.1

    Article  Google Scholar 

  • Mass, C. F., Ovens, D., Westrick, K., & Colle, B. A. (2002). Does increasing resolution produce more skillful forecasts. Bulletin of the American Meteorological Society, 83(3), 407–430. https://doi.org/10.1175/1520-0477(2002)083

    Article  Google Scholar 

  • Mehta, S. K., Venkat Ratnam, M., Sunilkumar, S. V., Narayana Rao, D., & Krishna Murthy, B. V. (2017). Diurnal variability of the atmospheric boundary layer height over a tropical station in the Indian monsoon region. Atmospheric Chemistry and Physics, 17(1), 531–549. https://doi.org/10.5194/acp-17-531-2017

    Article  Google Scholar 

  • Mitra, A. K., Bohra, A. K., Rajeevan, M. N., & Krishnamurti, T. N. (2009). Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. Journal of the Meteorological Society of Japan, 87A, 265–279. https://doi.org/10.2151/jmsj.87A.265

    Article  Google Scholar 

  • Morwal, S. B., & Parasnis, S. S. (1997). On the dynamical aspects of the monsoon boundary layer. Boundary-Layer Meteorology, 83, 163–171. https://doi.org/10.1023/A:1000262328589

    Article  Google Scholar 

  • Murthy, B. S., Parasnis, S. S., & Ek, M. (2004). Interactions of the land-surface with the atmospheric boundary layer: case studies from LASPEX. Current Science, 86(8), 1128–1134. https://www.jstor.org/stable/24109322.

  • Parasnis, S. S. (1991). The convective boundary layer during active and break conditions of the summer monsoon. Journal of Atmospheric Science, 48, 999–1002. https://doi.org/10.1175/1520-0469(1991)048%3c0999:TCBLDA%3e2.0.CO;2

    Article  Google Scholar 

  • Parasnis, S. S., & Morwal, S. B. (1994). A convectively driven boundary layer in the monsoon trough. Boundary-Layer Meteorology, 71, 197–204. https://doi.org/10.1007/BF00709227

    Article  Google Scholar 

  • Potty, K. V. J., Mohanthy, U. C., Nandi, B., & Ramesh, K. J. (1996). Planetary boundary layer over monsoon trough region in a high-resolution primitive equation model. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 105(1), 81–100. https://www.ias.ac.in/public/Volumes/jess/105/01/0081-0100.pdf.

  • Potty, K. V. J., Mohanty, U. C., & Raman, S. (2001). Simulation of boundary layer structure over the Indian summer monsoon trough during the passage of a depression. Journal of Applied Meteorology, 40(7), 1241–1254. https://doi.org/10.1175/1520-0450(2001)040%3c1241:SOBLSO%3e2.0.CO;2

    Article  Google Scholar 

  • Rajagopal, E. N., et al. (2019). Current and future activities in unified modelling and data assimilation at NCMRWF. In D. Randall, J. Srinivasan, R. Nanjundiah, & P. Mukhopadhyay (Eds.), Current trends in the representation of physical processes in weather and climate models. Springer Atmospheric Sciences. Springer.

    Google Scholar 

  • Rajkumar, G., Narasimha, R., Singal, S.P., & Gera, B. S. (1996). Thermal and wind structure of the monsoon trough boundary layer. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 105 (3), 325–341. https://www.ias.ac.in/article/fulltext/jess/105/03/0325-0341.

  • Rao, Y. P. (1976). Southwest monsoon, Synoptic Meteorology, Meteor. Monogr. India: Meteorological Department. (pp. 107–185).

  • Renfrew, I. A., Moore, G. W. K., Kristjánsson, J. E., Ólafsson, H., Gray, S. L., Petersen, G. N., Bovis, K., Brown, P., Fore, I., Haine, T. W. N., Hay, C., Irvine, E. A., Oghuishi, T., Outten, S. D., Pickart, R., Shapiro, M. A., Sproson, D., Swinbank, R., Wooley, A., & Zhang, S. (2008). The Greenland flow distortion experiment. Bulletin of the American Meteorological Society, 88, 1307–1324. https://doi.org/10.1175/2008BAMS2508.1

    Article  Google Scholar 

  • Sandeep, A., Rao, T. N., Ramkiran, C. N., & Rao, S. V. B. (2014). Differences in atmospheric boundary-layer characteristics between wet and dry episodes of the Indian Summer Monsoon. Boundary-Layer Meteorology, 153(2), 217–236. https://doi.org/10.1007/s10546-014-9945-z

    Article  Google Scholar 

  • Sathyanadh, A., Prabha, T. V., Balaji, B., Resmi, E. A., & Karipot, A. (2017). Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley. Atmospheric Research, 193, 125–141. https://doi.org/10.1016/j.atmosres.2017.02.016

    Article  Google Scholar 

  • Seidel, D. J., Ao, C. O., & Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research Atmospheres, 115(16), 1–15. https://doi.org/10.1029/2009JD013680

    Article  Google Scholar 

  • Sikka, D. R., & Narasimha, R. (1995). Genesis of the Monsoon Trough Boundary Layer Experiment (MONTBLEX). Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 104, 157–187.

    Google Scholar 

  • Thomas, L., Malap, N., Gbrabowski, W. W., Dani, K., & Prabha, T. V. (2018). Convective environment in pre-monsoon and monsoon conditions over the Indian subcontinent: The impact of surface forcing. Atmospheric Chemistry and Physics, 18(2018), 7473–7488. https://doi.org/10.5194/ACP-18-7473-2018

    Article  Google Scholar 

  • Turner, A. G., Bhat, G. S., Martin, G. M., Parker, D. J., Taylor, C. M., Mitra, A. K., Tripathi, S. N., Milton, S., Rajagopal, E. N., Evans, J. G., Morrison, R., Pattnaik, S., Sekhar, M., Bhattacharya, B. K., Madan, R., Govindankutty, M., Fletcher, J. K., Willetts, P. D., Menon, A., & Marsham, J. H. (2019). Interaction of convective organization with monsoon precipitation, atmosphere, surface and sea: The 2016 INCOMPASS field campaign in India. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3633

    Article  Google Scholar 

  • Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., & Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans, 103(C7), 14451–14510. https://doi.org/10.1029/97jc02719

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the INCOMPASS team for the aircraft data, and the NCMRWF team for the model outputs. We also thank anonymous reviewers for their insightful suggestions. This work was done under the MoES–NERC Monsoon Mission project INCOMPASS.

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sandeep.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandeep, A., Mitra, A.K. & Amarjyothi, K. Validation of NCUM Model Forecasts Against FAAM Aircraft Observations Over Monsoon Trough Region: A Diagnostic Case Study. Pure Appl. Geophys. 179, 2537–2551 (2022). https://doi.org/10.1007/s00024-022-03040-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03040-w

Keywords

Navigation