Skip to main content
Log in

Convection-Permitting WRF Simulations of Tropical Cyclones Over the North Indian Ocean

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this study, convection-permitting WRF simulations of tropical cyclones (TC) over the North Indian Ocean (NIO) region were examined for 10 TCs during 2010–2019. The TCs were segregated into four groups, i.e., group-1 [severe cyclonic storms (SCS) Laila, Jal and Helen with short (~ 50 h) intensification period], group-2 [very severe cyclonic storms (VSCS) Vardah, Thane and Lehar with moderate (~ 56 h) intensification period], group-3 [extremely severe cyclonic storm (ESCS) Hudhud and VSCS Gaja with long (~ 60 h) intensification period] and group-RI [rapidly intensified (RI) cyclones Phailin and Fani with very long (~ 75 h) intensification period]. Two numerical experiments were conducted for each cyclone with two configurations, namely, (i) a parent domain of 27-km resolution with a 9-km nest (27:9) with convection parameterization (CP) switched on in both 27-km and 9-km domains (9 km-CP) and (ii) a parent domain of 27-km resolution with inner 9-km and 3-km nests (27:9:3) with convective parameterization switched off in the 3-km domain [3-km microphysics parameterization (3 km-MP)]. All the simulations utilized the 0.5° resolution Global Forecasting System (GFS) data for initial and boundary conditions. Results show that the 9 km-CP produced relatively higher (lower) intensity during the early intensification phase (peak and decay phases) for all cyclones due to producing a higher (lower) thermal anomaly than 3 km-MP, indicating different impacts of parameterized convection and explicit convection in the respective phases. It was observed that the track and intensity differences between 9 km-CP and 3 km-MP were greatest in group-3 cyclones, followed by group-RI, group-2, and group-1 cyclones. The 3 km-MP produced large improvements (20–55% at 24–96 h) for group-3, group-RI, and group-2 cyclones due to net effects of stronger convergence and a heating/thermal anomaly by explicitly resolving the cloud and convection processes. Overall, the 3 km-MP improved the intensity prediction by 3%, 19%, 25%, and 53% at 24, 48, 72, and 96 h, respectively, over 9 km-CP. The 3 km-MP also improved the structure predictions in terms of radial and tangential winds, storm sizes, and cloud bands in better agreement with observations. It also improved the track predictions by roughly 36%, 16%, 34%, and 16% at forecast intervals of 24, 48, 72, and 96 h, respectively, over 9 km-CP. Overall, the explicit simulations (3 km-MP) show improvements over coarse simulations using parameterized convection (9 km-CP) by better resolving the inflow, convergence, and updrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anthes, R. A. (1982). Tropical cyclones: Their evolution, structure and effects. Meteorological Monograph Series American Meteorological Society Boston, 19(41), 208–209.

    Google Scholar 

  • Atkinson, G. D., & Holliday, C. R. (1977). Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Monthly Weather Review, 105(4), 421–427.

    Google Scholar 

  • Biswas, M. K., Bernardet, L., & Dudhia, J. (2014). Sensitivity of hurricane forecasts to cumulus parameterizations in the HWRF model. Geophysical Research Letters, 41(24), 9113–9119.

    Google Scholar 

  • Chan, J. C. L. (1984). An observational study of the physical processes responsible for tropical cyclone motion. Journal of Atmospheric Science, 41, 1036–1048.

    Google Scholar 

  • Chan, J. C. L. (2005). The physics of tropical cyclone motion. Annual Review of Fluid Mechanics, 37, 99–128.

    Google Scholar 

  • Chan, K. T. F., & Chan, J. C. L. (2015). Impacts of vortex intensity and outer winds on tropical cyclone size. Quarterly Journal of the Royal Meteorological Society, 141, 525–537. https://doi.org/10.1002/qj.2374

    Article  Google Scholar 

  • Chutia, L., Pathak, B., Parottil, A., & Bhuyan, P. K. (2019). Impact of microphysics parameterizations and horizontal resolutions on simulation of “MORA” tropical cyclone over Bay of Bengal using Numerical Weather Prediction Model. Meteorology and Atmospheric Physics, 131, 1483–1495.

    Google Scholar 

  • Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., De Maria, M., Dudhia, J., Holland, G., Klemp, J., Michalakes, J., & Reeves, H. (2008). Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6), 1990–2005.

    Google Scholar 

  • De Maria, M., Sampson, C. R., Knaff, J. A., & Musgrave, K. D. (2014). Is tropical cyclone intensity guidance improving? Bulletin of the American Meteorological Society, 95(3), 387–398. https://doi.org/10.1175/BAMS-D-12-00240.1

    Article  Google Scholar 

  • Deshpande, M., Pattnaik, S., & Salvekar, P. S. (2010). Impact of physical parameterization schemes on numerical simulation of super cyclone Gonu. Natural Hazards, 55(2), 211–231.

    Google Scholar 

  • Deshpande, M. S., Pattnaik, S., & Salvekar, P. S. (2012). Impact of cloud parameterization on the numerical simulation of a super cyclone. Annales Geophysicae, 30, 775–795. https://doi.org/10.5194/angeo-30-775-2012

    Article  Google Scholar 

  • Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20), 3077–3107.

    Google Scholar 

  • Dudhia, J. (1996). A multi-layer soil temperature model for MM5. In Preprints, The Sixth PSU/NCAR mesoscale model users’ workshop (pp. 22–24).

  • Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665.

    Google Scholar 

  • Emanuel, K. A., Hodges, R. E., Malmstadt, J. C., & Scheitlin, K. N. (2014). Hurricanes and Climate Change (Vol. 2). Springer.

    Google Scholar 

  • Elsner, J. B., Kossin, J. P., & Jagger, T. H. (2008). The increasing intensity of the strongest tropical cyclones. Nature, 455(7209), 92.

    Google Scholar 

  • Fang, J., & Zhang, F. (2010). Initial development and genesis of Hurricane Dolly (2008). Journal of Atmospheric Science, 67, 655–672.

    Google Scholar 

  • Fang, J., & Zhang, F. (2011). Evolution of multiscale vortices in the development of Hurricane Dolly (2008). Journal of the Atmospheric Sciences, 68(1), 103–122.

    Google Scholar 

  • Fierro, A. O., Rogers, R. F., & Marks, F. D. (2009). The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Monthly Weather Review. https://doi.org/10.1175/2009MWR2946.1

    Article  Google Scholar 

  • Fovell, R. G., Bu, Y. P., Corbosiero, K. L., Tung, W.-W., Cao, Y., Kuo, H.-C., Hsu, L., & Su, H. (2016). Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Meteorological Monographs, 56, 11.1-11.27. https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0006.1

    Article  Google Scholar 

  • Gentry, M. S., & Lackmann, G. M. (2010). Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Monthly Weather Review, 138(3), 688–704. https://doi.org/10.1175/2009mwr2976.1

    Article  Google Scholar 

  • Gopalakrishnan, S. G., Goldenberg, S., Quirino, T., Zhang, X., Marks, F., Yeh, K. S., Atlas, R., & Tallapragada, V. (2012). Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Weather and Forecasting, 27, 647–666.

    Google Scholar 

  • Gopalakrishnan, S. G., Marks, F., Zhang, X., Bao, J. W., Yeh, K. S., & Atlas, R. (2011). The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Monthly Weather Review, 139, 1762–1784.

    Google Scholar 

  • Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96, 669–700.

    Google Scholar 

  • Holland, G. J. (1997). The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences, 54(21), 2519–2541.

    Google Scholar 

  • Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42(2), 129–151.

    Google Scholar 

  • Houze, R. A., Chen, S. S., Smull, B. F., Lee, W. C., & Bell, M. M. (2007). Hurricane intensity and eyewall replacement. Science, 315(5816), 1235–1239.

    Google Scholar 

  • IMD (2011). Report on Cyclonic disturbances over North Indian Ocean during 2010. RSMC-Tropical Cyclones Report No. ESSO/IMD/RSMC-Tropical Cyclones Report No-1 (2011). India Meteorological Department.

  • IMD (2012). Report on Cyclonic disturbances over North Indian Ocean during 2011. RSMC-Tropical Cyclones Report No. ESSO/IMD/RSMC-Tropical Cyclones Report No-02 (2012). India Meteorological Department.

  • IMD (2014). Report on Cyclonic disturbances over North Indian Ocean during 2013. RSMC-Tropical Cyclones Report No. ESSO/IMD/RSMC-Tropical Cyclones Report No-01 (2014)/5. India Meteorological Department.

  • IMD (2015). Report on Cyclonic disturbances over North Indian Ocean during 2014. RSMC-Tropical Cyclones Report No. ESSO/IMD/RSMC-Tropical Cyclones Report No-01 (2015)/6. India Meteorological Department.

  • IMD (2017). Report on Cyclonic disturbances over North Indian Ocean during 2016. RSMC-Tropical Cyclones Report No. ESSO/IMD/RSMC-Tropical Cyclones Report No-01 (2017)/8. India Meteorological Department.

  • IMD (2019a). Report on Cyclonic disturbances over North Indian Ocean during 2018. RSMC-Tropical Cyclones Report No. ESSO/IMD/CWD-Tropical Cyclones Report No-01 (2019a)/9. India Meteorological Department.

  • IMD (2019b). India Meteorological Department http://www.rsmcnewdelhi.imd.gov.in/images/pdf/archive/bulletins/2019b/rfani.pdf. Accessed 12 October 2019b.

  • Kain, J. S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology and Climatology, 43(1), 170–181.

    Google Scholar 

  • Kaplan, J., & De Maria, M. (2003). Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather and Forecasting, 18, 1093–1108.

    Google Scholar 

  • Knaff, J. A., De Maria, M., Molenar, D. A., Sampson, C. R., & Seybold, M. G. (2011). An automated objective, multiple-satellite-platform tropical cyclone surface wind analysis. Journal of Applied Meteorology and Climatology, 50, 2149–2166.

    Google Scholar 

  • Knaff, J. A., Longmore, S. P., De Maria, R. T., & Molenar, D. A. (2015). Improved tropical cyclone flight-level wind estimates using routine infrared satellite reconnaissance. Journal of Applied Meteorology and Climatology, 54, 463478.

    Google Scholar 

  • Kossin, J. P., Emanuel, K. A., & Vecchi, G. A. (2014). The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509(7500), 349.

    Google Scholar 

  • Krishnamurti, T. N., Pattnaik, S., Stefenova, L., Vijaykumar, T. S. V., Mackey, B. P., O’shay, A. J., & Pasch, R. J. (2005). The hurricane intensity issue. Monthly Weather Review, 133, 1886–1912.

    Google Scholar 

  • Li, X. & Pu, Z. (2006). Sensitivity of numerical simulations of Hurricane Emily (2005) to cumulus and microphysical parameterizations in the WRF model. 27th Conference on Hurricanes and Tropical Meteorology. American Meteorological Society, 16A.1.

  • Lin, J. L., Lee, M. I., Kim, D., Kang, I. S., & Frierson, D. M. W. (2008). The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. Journal of Climate, 21, 883–909.

    Google Scholar 

  • Marks, F. D. (2003). Hurricanes. Encyclopedia of Atmospheric Sciences.

  • Marks, F. D., & Shay, L. K. (1998). Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bulletin of the American Meteorological Society, 79(2), 305–323.

    Google Scholar 

  • McCumber, M., Tao, W. K., Simpson, J., Penc, R., & Soong, S. T. (1991). Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. Journal of Applied Meteorology, 30(7), 985–1004.

    Google Scholar 

  • Miyoshi, T., Komori, T., Yonehara, H., Sakai, R., & Yamaguchi, M. (2010). Impact of resolution degradation of the initial condition on typhoon track forecasts. Weather Forecasting, 25, 1568–1573. https://doi.org/10.1175/2010WAF2222392.1

    Article  Google Scholar 

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663–16682.

    Google Scholar 

  • Mohandas, S., & Ashrit, R. (2014). Sensitivity of different convective parameterization schemes on tropical cyclone prediction using a mesoscale model. Natural Hazards, 73(2), 213–235.

    Google Scholar 

  • Mueller, K. J., De Maria, M., Knaff, J., Kossin, J. P., & VonderHaar, T. H. (2006). Objective estimation of tropical cyclone wind structure from infrared satellite data. Weather and Forecasting, 21(6), 990–1005.

    Google Scholar 

  • Mukhopadhyay, P., Taraphdar, S., & Goswami, B. N. (2011). Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. Journal of Geophysical Research: Atmospheres, 116, D5.

    Google Scholar 

  • Nasrollahi, N., AghaKouchak, A., Li, J., Gao, X., Hsu, K., & Sorooshian, S. (2012). Assessing the impacts of different WRF precipitation physics in hurricane simulations. Weather and Forecasting, 27(4), 1003–1016.

    Google Scholar 

  • Nelson Stephen, A. (2014). Tropical Cyclones (Hurricanes). Tulane University (TIDE-1220).

  • Noah, Y., Cheon, W. G., Hong, S. Y., & Raasch, S. (2003). Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary-Layer Meteorology, 107(2), 401–427.

    Google Scholar 

  • Ooyama, K. V. (1969). Numerical simulation of the life cycle of tropical cyclones. Journal of Atmospheric Science, 26, 3–40.

    Google Scholar 

  • Osuri, K. K., Mohanty, U. C., Routray, A., Kulkarni, M. A., & Mohapatra, M. (2012). Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Natural Hazards, 63(3), 1337–1359.

    Google Scholar 

  • Osuri, K. K., Mohanty, U. C., Routray, A., Mohapatra, M., & Niyogi, D. (2013). Real-time track prediction of tropical cyclones over the North Indian Ocean using the ARW model. Journal of Applied Meteorology and Climatology, 52, 2476–2492. https://doi.org/10.1175/JAMC-D-12-0313.1

    Article  Google Scholar 

  • Pielke, R. A., Jr., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., & Musulin, R. (2008). Normalized hurricane damage in the United States: 1900–2005. Natural Hazards Review, 9(1), 29–42.

    Google Scholar 

  • Raghavan, S., & Sen Sarma, A. K. (2000). Tropical cyclone impacts in India and neighbourhood. Storms, 1, 339–356.

    Google Scholar 

  • Raju, P. V. S., Potty, J., & Mohanty, U. C. (2011). Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorology and Atmospheric Physics, 113(3–4), 125.

    Google Scholar 

  • Rao, D. B., Naidu, C. V., & Rao, B. S. (2001). Trends and fluctuations of the cyclonic systems over North Indian Ocean. Mausam, 52(1), 37–46.

    Google Scholar 

  • Rappaport, E. N., Franklin, J. L., Avila, L. A., Baig, S. R., Beven, J. L., Blake, E. S., Burr, C. A., Jiing, J. G., Juckins, C. A., Knabb, R. D., & Landsea, C. W. (2009). Advances and challenges at the National Hurricane Center. Weather and Forecasting, 24(2), 395–419.

    Google Scholar 

  • Reshmi Mohan, P., Srinivas, C. V., Yesubabu, V., Bhaskaran, R., & Venkatraman, B. (2018). Tropical cyclone simulations over Bay of Bengal with ARW model: Sensitivity to cloud microphysics schemes: Sensitivity to cloud microphysics schemes. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2019.104651

    Article  Google Scholar 

  • Reynolds, R. W., & Smith, T. M. (1994). Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7(6), 929–948.

    Google Scholar 

  • Riehl, H. (1954). Tropical Meteorology. McGraw-Hill.

    Google Scholar 

  • Rogers, R., et al. (2006). The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bulletin of the American Meteorological Society, 87, 1523–1537. https://doi.org/10.1175/BAMS-87-11-1523

    Article  Google Scholar 

  • Roy Bhowmik, S. K. (2013). Operational Numerical Weather Prediction (NWP) System of IMD. http://www.imd.gov.in/doc/nwpsystem.pdf

  • Sandeep, C. P. R., Krishnamoorthy, C., & Balaji, C. (2018). Impact of cloud parameterization schemes on the simulation of Cyclone Vardah using the WRF model. Current Science, 115(6), 1143–1153.

    Google Scholar 

  • Seifert, A. (2011). Uncertainty and complexity in cloud microphysics. ECMWF Workshop on Representing Model Uncertainty and Error in Numerical Weather and Climate Prediction Models, 20–24 June 2011, Shinfield Park, pp. 77–86.

  • Shenoi, S., Shankar, D., & Shetye, S. (2002). Differences in heat budgets of the near-surface Arabian sea and Bay of Bengal: Implications for the summer monsoon. Journal of Geophysical Research: Oceans, 107, 5–1.

    Google Scholar 

  • Singh, K. K., & Bhaskaran, P. K. (2019). Prediction of landfalling Bay of Bengal cyclones during 2019 using the high-resolution Weather Research and Forecasting model. Meteorological Applications. https://doi.org/10.1002/met.1850

    Article  Google Scholar 

  • Singh, R., Kishtawal, C. M., Pal, P. K., & Joshi, P. C. (2012). Improved tropical cyclone forecasts over north Indian Ocean with direct assimilation of AMSU-A radiances. Meteorology and Atmospheric Physics, 115(1–2), 15–34.

    Google Scholar 

  • Singh, U. S., & Rathor, H. S. (1974). Computations of diabatic heating in the atmosphere. Pure and Applied Geophysics, 112, 274–280.

    Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M., Huang, X. Y., Wang, W., & Powers, J.G. (2008). A description of the advanced research WRF version 3. NCAR Technical Note. NCAR/TN-475+STR.

  • Smith, R. K. (2006). Lectures on tropical cyclones. https://www.meteo.physik.uni-muenchen.de/.../Lectures/Tropical_Cyclones/060510_troopical_cyclones-1.pdf

  • Song, J., Duhan, Y., & Klotzbach, P. J. (2020). Increasing trend in rapid intensification magnitude of tropical cyclones over the western North Pacific. Environmental Research Letters, 15, 084043.

    Google Scholar 

  • Song, X., & Zhang, G. J. (2011). Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests. Journal of Geophysical Research: Atmospheres, 116, D2.

    Google Scholar 

  • Srinivas, C. V., Greeshma, M., Mohan, B. R., & Venkatraman, B. (2015). Impact of air-sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3D-ocean model coupled to ARW. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1002/2015JD02443

    Article  Google Scholar 

  • Srinivas, C. V., Rao, D. B., Yesubabu, V., Baskaran, R., & Venkatraman, B. (2013). Tropical cyclone predictions over the Bay of Bengal using the high-resolution Advanced Research Weather Research and Forecasting (ARW) model. Quarterly Journal of the Royal Meteorological Society, 139(676), 1810–1825.

    Google Scholar 

  • Stern, D. P., & Nolan, D. S. (2012). On the height of the warm core in tropical cyclones. Journal of the Atmospheric Sciences, 69(5), 1657–1680.

    Google Scholar 

  • Tao, W. K., & Simpson, J. (1993). The Goddard cumulus ensemble model. Part I: Model description. Terrestrial Atmospheric and Oceanic Sciences, 4(1), 35–72.

    Google Scholar 

  • Taraphdar, S., Mukhopadhyay, P., Leung, L. R., Zhang, F., Abhilash, S., & Goswami, B. N. (2014). The role of moist processes in the intrinsic predictability of Indian Ocean cyclones. Journal of Geophysical Research Atmospheres. https://doi.org/10.1002/2013JD021265

    Article  Google Scholar 

  • Wang, Y. (2002). An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Monthly Weather Review, 130(12), 3022–3036.

    Google Scholar 

  • Wang, Y. (2009). How do outer spiral rainbands affect tropical cyclone structure and intensity? Journal of Atmospheric Science, 66, 1250–1273.

    Google Scholar 

  • Wang, Y. Q. (2012). Recent research progress on tropical cyclone structure and intensity. Tropical Cyclone Research and Review, 1, 254–275. https://doi.org/10.6057/2012TCRR02.05

    Article  Google Scholar 

  • Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846.

    Google Scholar 

  • Willoughby, H. E. (1990). Gradient balance in tropical cyclones. Journal of the Atmospheric Sciences, 47(2), 265–274.

    Google Scholar 

  • Zehr, R., Knaff, J., De Maria, M. (2008). Tropical Cyclone environmental vertical wind shear analysis using a microwave sounder. The 28th Conference on Hurricanes and Tropical Meteorology. American Meteorological Society, Orlando, Abstract 14B.2. https://ams.confex.com/ams/pdfpapers/137917.pdf

  • Zhang, F., Bei, N., Rotunno, R., & Snyder, C. (2007). Mesoscale predictability of moist baroclinic waves: Convection permitting experiments and multistage error growth dynamics. Journal of Atmospheric Science, 64, 3579–3594.

    Google Scholar 

  • Zhang, X., Yeh, X.-S., Quirino, T. S., Gopalakrishnan, S. G., Marks, F. D., Goldenbergh, S. B., & Aberson, S. (2011). HWRFx: Improving hurricane forecasts with high-resolution modeling. Computing in Science & Engineering, 13, 13–21. https://doi.org/10.1109/MCSE.2010.121.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. A.K. Bhaduri, Director, IGCAR for his keen interest and support throughout the study. The first author is grateful to HBNI and DAE for providing the research fellowship and facilities to conduct the study. the authors thank the India Meteorological Department for the open access of the best track parameters and DWR images used in the study. The authors are also thankful to Colorado State University for providing the CIRA multi-satellite images. The authors thank the anonymous reviewers for their constructive comments which greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Venkata Srinivas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, P.R., Srinivas, C.V. & Venkatraman, B. Convection-Permitting WRF Simulations of Tropical Cyclones Over the North Indian Ocean. Pure Appl. Geophys. 179, 1333–1363 (2022). https://doi.org/10.1007/s00024-022-02985-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02985-2

Keywords

Navigation