Skip to main content
Log in

Deep Mariana Island Arc: Highlights of the Tectonosphere

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Under the International Philippine Sea Geotraverse Project, research has been conducted on a deep geological and geophysical section of the tectonosphere, which includes the lithosphere and the asthenosphere, where the majority of Earth’s tectonic and magmatic processes occur. The present paper focuses on the Mariana region that is home to most such processes. The study attempts to model the deep structure of the Mariana Island Arc along the Philippine Sea Geotraverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bloomer, S. H., & Hawkins, J. W. (1983). Gabbroic and ultramafic rocks from the Mariana Trench: An island arc ophiolite. In D. E. Hayes (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Geophysical Monograph Series, 27, 294–317. https://doi.org/10.1029/GM027p0294

  • Christensen, D. H., & Ruff, L. J. (1988). Seismic coupling and outer rise earthquakes. Journal of Geophysical Research, 93(B11), 13421–13444. https://doi.org/10.1029/JB093iB11p13421.

  • Core data from the Deep Sea Drilling Project. WDC for MGG, Boulder Seafloor Series, v. 1. Accessed September 17, 2021, from https://www.ngdc.noaa.gov/mgg/geology/dsdp/dsdpcdv2.htm

  • Creager, K. C., & Jordan, T. H. (1986). Slab penetration into the lower mantle beneath the Mariana and other island arcs of northwest Pacific. Journal of Geophysical Research, 91(B3), 3573–3589. https://doi.org/10.1029/JB091iB03p03573

    Article  Google Scholar 

  • Deep Sea Drilling Project. Reports and Publications. Accessed September 17, 2021, from http://deepseadrilling.org/

  • Eguchi, T. (1984). Seismotectonics around the Mariana Trough. Tectonophysics, 102(1–4), 33–52. https://doi.org/10.1016/0040-1951(84)90007-6

    Article  Google Scholar 

  • Frolova, T. I., Perchuk, L. L., & Burikova, I. A. (1989). Magmatism and transformation of the crust of active margins. Moscow, Nedra (in Russian)

  • Fryer, P., Wheat, C. G., Williams, T., Kelley, C., Kevin, J., Ryan, J., Kurz, W., Shervias, J., Albers, E., Bekins, B., Debret, B., Deng, J., Dong, Y., Eickenbusch, P., Frery, E., Ichiyama, Y., Johnston, R., Kevorkian, R., Magalhaes, V., et al. (2020). Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life. Philosophical Transactions of the Royal Society A, 378, 20180425. https://doi.org/10.1098/rsta.2018.0425

    Article  Google Scholar 

  • Geology of the Philippine Sea bottom. (1980). F. V. Peive (Ed.), Moscow, Nauka (in Russian)

  • Geotraverse North China Plain—Philippine Sea—Mariana Trench. (1991). A. G. Rodnikov, N. Isedzaki, Ts. Shiki, S. Ueda, & L. Godong (Eds.), Moscow, Nauka (in Russian)

  • Global Volcanism Program. The Volcanoes of the World database. National Museum of Natural History, Smithsonian Institution. Accessed 17 Sept 2021, from https://volcano.si.edu/

  • GNSS Time Series, Jet Propulsion Lab., California Institute of Technology. Accessed 17 Sept 2021, from https://sideshow.jpl.nasa.gov/post/series.html

  • Gushchenko, I. I. (1979). Volcanic Eruptions of the World (Catalogue). Moscow, Nauka (in Russian)

  • Hall, R., Ali, J. R., Anderson, C. D., & Baker, S. J. (1995). Origin and motion history of the Philippine Sea plate. Tectonophysics, 251, 229–250. https://doi.org/10.1016/0040-1951(95)00038-0

    Article  Google Scholar 

  • Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L., & Zoback, M. D. (2018). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, 484–498. https://doi.org/10.1016/j.tecto.2018.07.007

    Article  Google Scholar 

  • Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., WSM Team. (2016). World Stress Map Database Release 2016. V. 1.1. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001

    Article  Google Scholar 

  • Hilde, T. W. C., & Lee, C. S. (1984). Origin and evolution of the West Philippine Basin: A new interpretation. Tectonophysics, 20, 85–104. https://doi.org/10.1016/0040-1951(84)90009-X

    Article  Google Scholar 

  • Hobart, M. A., Anderson, R. N., Fujii, N., & Uyeda, S. (1983). Heat flow from hydrothermal mounds in two million year old crust of the Mariana Trough which exceeds two watts per square meter. Eos Transactions American Geophysical Union, 64, 315.

    Google Scholar 

  • Hussong, D. M., & Sinton, J. B. (1983). Seismicity associated with back arc crustal spreading in the central Mariana Trough. In D. E. Hayes (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Geophysical Monograph Series, 27, 217–235. https://doi.org/10.1029/GM027p0217

  • Hussong, D. M., Uyeda, S., Blanchet, R., Bleil, U., Ellis, C. H., Francis, T. J. G., Fryer, P., Horai, K. I., Kling, S., Meijer, A., Nakamura, K., Natland, J. H., Packham, G. H., & Sharaskin, A. (1982). Tectonic processes and the history of the Mariana arc: A synthesis of the results of Deep Sea Drilling Project leg 60. Initial Reports of the Deep Sea Drilling Project, 60, 909–929. https://doi.org/10.2973/dsdp.proc.60.154.1982

    Article  Google Scholar 

  • International Seismological Centre. (2021). Searching the ISC Bulletin. Accessed 20 Sept 2021, from https://doi.org/10.31905/D808B830

  • Karig, D. E. (1974). Evolution of arc systems in the western Pacific. Annual Review of Earth and Planetary Sciences, 2, 51–75. https://doi.org/10.1146/annurev.ea.02.050174.000411

    Article  Google Scholar 

  • Karig, D. E., & Moore, G. F. (1975). Tectonic complexities in the Bonin arc system. Tectonophysics, 27, 97–118. https://doi.org/10.1016/0040-1951(75)90101-8

    Article  Google Scholar 

  • Koloskov, A. V., Rashidov, V. A., & Ananyev, V. V. (2020). First discovery of a nonophiolite-type spinel lherzolite xenolith in the back-arc basin of the Mariana Island Arc system. Oceanology, 60(4), 548–564. https://doi.org/10.1134/S0001437020040128

    Article  Google Scholar 

  • Kroenke, L., Scott, R., Balshaw, K., Brassell, S., Chotin, P., Heiman, M. E., Ishii, T., Keating, B. H., Martini, E., Mattey, D. P., Rodolfo, K., Sartori, R., Theyer, F., Usher, J. L., & Zakariadze, G. (1981). Initial Reports of the Deep Sea Drilling Project, 59. https://doi.org/10.2973/dsdp.proc.59.1981

  • LaTraille, S. L., & Hussong, D. M. (1980). Crustal structure across the Mariana Island Arc. In D. E. Hayes (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Geophysical Monograph Series, 23, 209−221. https://doi.org/10.1029/GM023p0209

  • Morishita, T., Tani, K., Shukuno, H., Harigane, Y., Tamura, A., Kumagai, H., & Hellebrand, E. (2011). Diversity of melt conduits in the Izu-Bonin-Mariana forearc mantle: Implications for the earliest stage of arc magmatism. Geology, 39, 411–414. https://doi.org/10.1130/G31706.1

    Article  Google Scholar 

  • Mueller, C. S., Haller, K. M., Luco, N., Petersen, M. D., & Frankel, A. D. (2012). Seismic hazard assessment for Guam and the Northern Mariana Islands. U.S. Geological Survey Open-File Report 2012–1015. Accessed 20 Sept 2021, from https://pubs.usgs.gov/of/2012/1015/

  • National Oceanic and Atmospheric Administration, U.S. Department of Commerce. (2016). The geology of the Mariana convergent plate region. (by Chadwick, B., & Fryer P.). Accessed September 20, 2021, from https://oceanexplorer.noaa.gov/okeanos/explorations/ex1605/background/geology/welcome.html

  • Newman, S., Stolper, E., & Stern, R. (2000). H2O and CO2 in magmas from the Mariana arc and back arc systems. Geochemistry, Geophysics, Geosystems, 1(5). https://doi.org/10.1029/1999GC000027

  • Ocean Drilling Program Legacy. Final Technical Report. Samples, Data, AND Publications. Consortium for Ocean Leadership. Accessed 20 Sept 2021, from http://www.odplegacy.org/samples_data/index.html.

  • Okino, K., Kasuga, S., & Ohara, Y. (1998). A new scenario of the Parece Vela Basin genesis. Marine Geophysical Researches, 20, 21–40. https://doi.org/10.1023/A:1004377422118

    Article  Google Scholar 

  • Okino, K., Shimakawa, Y., & Nagaoka, S. (1994). Evolution of the Shikoku Basin. Journal of Geomagnetism and Geoelectricity, 46(6), 463–479. https://doi.org/10.5636/jgg.46.463

    Article  Google Scholar 

  • Rashidov, V. A. (2010). Geomagnetic studies of underwater volcanoes of island arcs and marginal seas of the western Pacific Ocean [abstract of dissertation], Petropavlovsk-Kamchatsky: IVS FEB RAS, p. 27 (in Russian)

  • Rashidov, V. A. (2011). Integrated catalog of Late Cenozoic underwater volcanoes of the Pacific Ocean. In: Volcanism and Geodynamics. Proceedings of the 5th All-Russia Symposium on Volcanology and Paleovolcanology, November 21–25, 2011, Yekaterinburg: IGG UrB RAS, 297–299 (in Russian)

  • Rodkin, M. V., & Rodnikov, A. G. (1996). Origin and structure of back-arc basin: New data and model discussion. Physics of the Earth and Planetary Interiors, 93(1–2), 123–131. https://doi.org/10.1016/0031-9201(95)03092-1

    Article  Google Scholar 

  • Rodnikov, A. G. (1986). International project “Geotraverse”: The aims, problems and outlook. Bulletin of ANUSSR, 2, 101–106 (in Russian)

    Google Scholar 

  • Rodnikov, A. G., Rodkin, M. V., Stroev, P. A., Uyeda, S., Isedzaki, N., & Siki, T. (1996). The deep structure and geophysical fields along a geotraverse across the Philippine Sea. Izvestiya, Physics of the Solid Earth, 12, 100–108 (in Russian)

    Google Scholar 

  • Rodnikov, A. G., Sergeyeva, N. A., Zabarinskaya, L. P., & Rashidov, V. A. (2014). Geodynamic models of the deep structure beneath the natural disaster regions of active continental margins. Moscow: Scientific World (in Russian)

  • Rodnikov, A. G., Zabarinskaya, L. P., Rashidov, V. A., Rodkin, M. V., & Sergeyeva, N. A. (2007). The Geotraverse North-China Plain—the Philippine Sea—Magellan Seamounts. Bulletin KRAUNZ, Earth Sciences, 9(1), 67–77 (in Russian)

    Google Scholar 

  • Sandwell, D. T., & Smith, W. H. F. (1997). Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research, 102(B5), 10039–10054. https://doi.org/10.1029/96JB03223

    Article  Google Scholar 

  • Scholz, C. H., & Campos, J. (1995). On the mechanism of seismic decoupling and back arc spreading at subduction zones. Journal of Geophysical Research, 100(B11), 22103–22115. https://doi.org/10.1029/95JB01869

    Article  Google Scholar 

  • Scientific Earth Drilling Information Service – SEDIS. International Ocean Discovery Program. Accessed 20 Sept 2021, from http://sedis.iodp.org/search.php.

  • Seekins, L. S., & Teng, T. (1977). Lateral variation in the structure of the Philippine Sea plate. Journal of Geophysical Research, 82(2), 317–324. https://doi.org/10.1029/JB082i002p00317

    Article  Google Scholar 

  • Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL—A model for Recent plate velocities from space geodesy. Journal of Geophysical Research, 107(B4), ETG11-1-ETG11-30. https://doi.org/10.1029/2000JB000033

    Article  Google Scholar 

  • Siebert, L., Simkin, T., & Kimberly, P. (2010). Volcanoes of the World (3rd ed.). University of California Press.

    Google Scholar 

  • Simkin, T., & Siebert, L. (1994). Volcanoes of the World. Geosciences Press Inc.

    Google Scholar 

  • Sinton, J. B., & Hussong, D. M. (1983). Crustal structure of a short length transform fault in the Central Mariana Trough. In D. E. Hayes (Ed.). The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2. Geophysical Monograph Series, 27, 236–254. https://doi.org/10.1029/GM027p0236

  • Stern, R. J., Fouch, M. J., & Klemperer, S. L. (2003). An overview of the Izu-Bonin-Mariana subduction factory. In J. Eiler (Ed.), Inside the Subduction Factory. Geophysical Monograph Series, 138, 175–222. https://doi.org/10.1029/138GM10

  • Takahashi, N., Kodaira, S., Klemperer, S., Tatsumi, Y., Kaneda, Y., & Suyehiro, K. (2007). Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology, 35(3), 203–206. https://doi.org/10.1130/G23212A.1

    Article  Google Scholar 

  • The Global Heat Flow Database. International Heat Flow Commission (IHFC) of the IASPEI. Accessed 20 Sept 2021, from https://www.ihfc-iugg.org/products/global-heat-flow-database

  • Uyeda, S., & Kanamori, H. (1979). Back-arc opening and the mode of subduction. Journal of Geophysical Research 84(B3), 1049–1061. Accessed 20 Sept 2021, from https://resolver.caltech.edu/CaltechAUTHORS:20150708-150204772

  • Van Hoose, A. E., Streck, M. J., Pallister, J. S., & Walle, M. (2013). Sulfur evolution of the 1991 Pinatubo magmas based on apatite. Journal of Volcanology and Geothermal Research, 257, 72–89. https://doi.org/10.1016/j.jvolgeores.2013.03.007

    Article  Google Scholar 

  • Yunga, S. L., & Rogozhin, E.A. (2000). Seismicity, earthquake center mechanisms and seismotectonic deformations within active blocks of the lithosphere. In A. F. Grachev (Ed.), Modern tectonics, geodynamics and seismicity of North Eurasia, 412–417. Moscow, Probel. (in Russian)

  • Zhang, J., & Lay, T. (1992). The April 5, 1990 Mariana Islands earthquake and subduction zone stresses. Physics of the Earth and Planetary Interiors, 72(1–2), 99–121. https://doi.org/10.1016/0031-9201(92)90052-W

    Article  Google Scholar 

Download references

Acknowledgements

This article is written in memory of Dr. Alexander G. Rodnikov (1937–2015), whose life and whose scientific path and professional activity has always been inseparably associated with the Far East.

Funding

This work was conducted in the framework of budgetary funding of the Geophysical Center of RAS, adopted by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Ludmila Zabarinskaya and the design was done by her. All authors commented on previous versions of the manuscript; the section on volcanism was prepared by Vladimir Rashidov. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Natalia Sergeyeva.

Ethics declarations

Conflict of interest

Not applicable.

Data availability

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabarinskaya, L., Rashidov, V. & Sergeyeva, N. Deep Mariana Island Arc: Highlights of the Tectonosphere. Pure Appl. Geophys. 179, 3917–3929 (2022). https://doi.org/10.1007/s00024-022-02960-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02960-x

Keywords

Navigation