Skip to main content
Log in

Estimation of τc, τmaxc and Pd, Earthquake Early Warning Parameters, for Northwest of Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The ability to rapidly estimate earthquake magnitude based on the first few seconds after P-wave’s arrival is essential for establishing an Earthquake Early Warning (EEW) system. In this study, vertical components of velocity records at the first three seconds of the P wave were used to obtain the magnitude scaling relation of EEW parameters (\({\tau }_{\mathrm{c}}\), \({\tau }_{\mathrm{p}}^{\mathrm{max}}\) and \({P}_{\mathrm{d}}\)) in Tabriz region, located in northwestern Iran. A data set, including 1045 events between 2006 and 2014 with \(2.5\le {M}_{\mathrm{w}}\le 6.5\) and epicentral distance less than 200 km was selected to estimate EEW parameters. Magnitude scaling relations were analyzed at three different signal-to-noise ratios (signal-to-noise ratio (SNR) greater than 15, 30, and 50). To obtain a more accurate magnitude scaling relation, the estimated magnitude was compared with the reference magnitude (\({M}_{\mathrm{w}}\)). The average absolute magnitude errors (\(\left|{M}_{\mathrm{est}}-{M}_{\mathrm{obs}}\right|\)) based on \({\tau }_{\mathrm{c}}\), \({\tau }_{\mathrm{p}}^{\mathrm{max}}\) and \({P}_{\mathrm{d}}\) Methods were \(\pm 0.4\) \(\pm 0.3\) and \(\pm 0.6\) magnitude units, respectively. Furthermore, an additional test was carried out to check the validity of the obtained results using acceleration data from the November 12, 2017, M7.3 Sarpol-E Zahab, June 22, 2002, M6.5 Changureh-Avaj, and December 26, 2003, M6.6 Bam earthquakes. It was suggested that the magnitudes estimated using \({\tau }_{\mathrm{p}}^{\mathrm{max}}\) method yielded more reliable results as compared with other methods, especially for M ≥ 5. It can be concluded that the lack of further large earthquakes and stations plays an essential role in the level of uncertainty associated with these methods. So, it can be supposed that the combination of the consequence on global observations would result in more accurate and applicable magnitude scaling relations, especially for more significant earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and Resources

The waveform data were obtained from the Iranian Seismological Center (IRSC).

References

  • Allen, R. M., & Kanamori, H. (2003). The potential for earthquake early warning in southern California. Science, 300(5620), 786–789.

    Article  Google Scholar 

  • Allen, R. M., & Melgar, D. (2019). Earthquake early warning: Advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences, 47, 361–388.

    Article  Google Scholar 

  • Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2), 210–265.

    Article  Google Scholar 

  • Böse, M. (2006). Earthquake early warning for Istanbul using artificial neural networks. Doctoral dissertation.

  • Böse, M., Heaton, T., & Hauksson, E. (2012). Rapid estimation of earthquake source and ground-motion parameters for earthquake early warning using data from single three-component broadband or strong-motion sensor. Bulletin of the Seismological Society of America, 102(2), 738–750.

    Article  Google Scholar 

  • Bracale, M., Colombelli, S., Elia, L., Karakostas, V., & Zollo, A. (2021). Design, implementation and testing of a network-based Earthquake Early Warning System in Greece. Frontiers in Earth Science, 880.

  • Chamoli, B. P., Kumar, A., Chen, D. Y., Gairola, A., Jakka, R. S., Pandey, B., et al. (2019). A prototype earthquake early warning system for northern India. Journal of Earthquake Engineering, 9, 1–19.

    Google Scholar 

  • Clinton, J., Zollo, A., Marmureanu, A., Zulfikar, C., & Parolai, S. (2016). State-of-the art and future of earthquake early warning in the European region. Bulletin of Earthquake Engineering, 14(9), 2441–2458.

    Article  Google Scholar 

  • Colombelli, S., Allen, R. M., & Zollo, A. (2013). Application of real-time GPS to earthquake early warning in subduction and strike-slip environments. Journal of Geophysical Research: Solid Earth, 118(7), 3448–3461.

    Article  Google Scholar 

  • Erdik, M., Aydinoglu, N., Fahjan, Y., Sesetyan, K., Demircioglu, M., Siyahi, B., et al. (2003). Earthquake risk assessment for Istanbul metropolitan area. Earthquake Engineering and Engineering Vibration, 2(1), 1–23.

    Article  Google Scholar 

  • Espinosa-Aranda, J. M., Cuellar, A., Garcia, A., Ibarrola, G., Islas, R., Maldonado, S., & Rodriguez, F. H. (2009). Evolution of the Mexican seismic alert system (SASMEX). Seismological Research Letters, 80(5), 694–706.

    Article  Google Scholar 

  • Espinosa-Aranda, J., Jimenez, A., Ibarrola, G., Alcantar, F., Aguilar, A., Inostroza, M., & Maldonado, S. (1995). Mexico city seismic alert system. Seismological Research Letters, 66(6), 42–53.

    Article  Google Scholar 

  • Given, D. D., Allen, R. M., Baltay, A. S., Bodin, P., Cochran, E. S., Creager, K., de Groot, R. M., Gee, L. S., Hauksson, E., Heaton, T. H. et al. (2018). Revised technical implementation plan for the ShakeAlert system—An earthquake early warning system for the West Coast of the United States, U.S. Geol. Surv. Open-File Rept. 2018-1155, 42 pp. https://doi.org/10.3133/ofr20181155.

  • Given, D. D., Cochran, E., Heaton, T., Hauksson, E., Allen, R., Hellweg, M., Vidale, J., & Bodin, P. (2014). Technical implementation plan for the ShakeAlert production prototype system—An earthquake early warning system for the West Coast of the United States. U.S. Geol. Surv. Open-File Rept. 2014-1097, 25 pp. https://doi.org/10.3133/ofr20141097.

  • Heidari, R., Shomali, Z. H., & Ghayamghamian, M. R. (2013). Magnitude scaling relations using period parameters and for Tehran region, Iran. Geophysical Journal International, 192(1), 275–284.

    Article  Google Scholar 

  • Hloupis, G., & Vallianatos, F. (2012). Wavelet-based rapid estimation of earthquake magnitude oriented to early warning. IEEE Geoscience and Remote Sensing Letters, 10(1), 43–47.

    Article  Google Scholar 

  • Hloupis, G., & Vallianatos, F. (2015). Wavelet-based methods for rapid calculations of magnitude and epicentral distance: An application to earthquake early warning system. Pure and Applied Geophysics, 172(9), 2371–2386.

    Article  Google Scholar 

  • Hoshiba, M., & Ozaki, T. (2014). Earthquake early warning and tsunami warning of the Japan Meteorological Agency, and their performance in the 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0). In Early warning for geological disasters (pp. 1–28). Springer-Verlag.

  • Kanamori, H. (2005). Real-time seismology and earthquake damage mitigation. Annual Review of Earth and Planetary Sciences, 33, 195–214.

    Article  Google Scholar 

  • Kohler, M., Cochran, E., Given, D., Guiwits, S., Neuhauser, D., et al. (2017). Earthquake early warning ShakeAlert system: West Coast wide production prototype. Seismological Research Letters, 89(1), 99–107.

    Article  Google Scholar 

  • Kohler, M. D., Cochran, E. S., Given, D., Guiwits, S., Neuhauser, D., Henson, I., Hartog, R., Bodin, P., Kress, V., Thompson, S., et al. (2018). Earthquake early warning ShakeAlert System: west coast wide production prototype. Seismological Research Letters, 89(1), 99–107.

    Article  Google Scholar 

  • Kohler, M. D., Smith, D. E., Andrews, J., Chung, A. I., Hartog, R., Henson, I., et al. (2020). Earthquake early warning ShakeAlert 2.0: Public rollout. Seismological Research Letters, 91(3), 1763–1775.

    Article  Google Scholar 

  • Leyton, F., Ruiz, S., Baez, J. C., Meneses, G., & Madariaga, R. (2018). How fast can we reliably estimate the magnitude of subduction earthquakes? Geophysical Research Letters, 45(18), 9633–9641.

    Article  Google Scholar 

  • Li, S. (2018). Approaching earthquake early-warning. Overview Disaster Prevention, 2, 14–24.

    Google Scholar 

  • Lior, I., Ziv, A., & Madariaga, R. (2016). P-wave attenuation with implications for earthquake early warning. Bulletin of the Seismological Society of America, 106(1), 13–22.

    Article  Google Scholar 

  • Melgar, D., Crowell, B. W., Geng, J., Allen, R. M., Bock, Y., Riquelme, S., et al. (2015). Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophysical Research Letters, 42(13), 5197–5205.

    Article  Google Scholar 

  • Mousavi-Bafrouei, S. H., & Mahani, A. B. (2020). A comprehensive earthquake catalogue for the Iranian Plateau (400 BC to December 31, 2018). Journal of Seismology, 24, 709–724.

    Article  Google Scholar 

  • Nakamura, Y. (1984). Development of earthquake early-warning system for the Shinkansen, some recent earthquake engineering research and practical in Japan. The Japanese National Committee of the International Association for Earthquake Engineering (pp. 224–238).

  • Nakamura, Y. (1988). On the urgent earthquake detection and alarm system (UrEDAS). In Proc. of the 9th World Conference on Earthquake Engineering (Vol. 7, pp. 673–678).

  • Nazeri, S., Shomali, Z. H., Colombelli, S., Elia, L., & Zollo, A. (2017). Magnitude estimation based on integrated amplitude and frequency content of the initial P wave in earthquake early warning applied to Tehran, Iran magnitude estimation based on integrated amplitude and frequency content. Bulletin of the Seismological Society of America, 107(3), 1432–1438.

    Article  Google Scholar 

  • Parolai, S., Boxberger, T., Pilz, M., Fleming, K., Haas, M., Pittore, M., et al. (2017). Assessing earthquake early warning using sparse networks in developing countries: Case study of the Kyrgyz Republic. Frontiers in Earth Science. https://doi.org/10.3389/feart.2017.00074

    Article  Google Scholar 

  • Sasani, M., Ghayamghamian, M. R., & Ansari, A. (2018). New magnitude scaling relations for earthquake early warning in the Alborz region, Iran. Acta Geophysica, 66(6), 1375–1382.

    Article  Google Scholar 

  • Sheen, D. H., Park, J. H., Chi, H. C., Hwang, E. H., Lim, I. S., Seong, Y. J., & Pak, J. (2017). The first stage of an earthquake early warning system in South Korea. Seismological Research Letters, 88(6), 1491–1498.

    Article  Google Scholar 

  • Trugman, D. T., Page, M. T., Minson, S. E., & Cochran, E. S. (2019). Peak ground displacement saturates exactly when expected: Implications for earthquake early warning. Journal of Geophysical Research: Solid Earth, 124(5), 4642–4653.

    Article  Google Scholar 

  • Vahed, H., & Heidari, R. (2017). Investigating the probabilistic warning times for the earthquake early warning system (EEWS) on the north Tabriz fault. Journal of the Earth and Space Physics, 43(1), 23–32.

    Google Scholar 

  • Vallianatos, F., Karakonstantis, A., & Sakelariou, N. (2021). Estimation of earthquake early warning parameters for Eastern Gulf of Corinth and Western Attica Region (Greece). First results. Sensors, 21(15), 5084.

    Article  Google Scholar 

  • Wu, Y. M., Hsiao, N., Chin, T., Chen, D., Chan, Y., & Wang, K. (2013). Earthquake early warning system in Taiwan. In M. Beer, I. A. Kougioumtzoglou, E. Patelli, & S.-K. Au (Eds.), Encyclopedia of earthquake engineering. Berlin: Springer.

    Google Scholar 

  • Wu, Y. M., & Kanamori, H. (2005). Rapid assessment of damaging potential of earthquakes in Taiwan from the beginning of P waves. Bulletin of the Seismological Society of America, 95, 1181–1185.

    Article  Google Scholar 

  • Yih-Min, W., Kanamori, H., Allen, R. M., & Hauksson, E. (2007). Determination of earthquake early warning parameters, τc and Pd, for southern California. Geophysical Journal International, 170(2), 711–717.

    Article  Google Scholar 

  • Zollo, A., Amoroso, O., Lancieri, M., Wu, Y. M., & Kanamori, H. (2010). A threshold-based earthquake early warning using dense accelerometer networks. Geophysical Journal International, 183, 963–974.

    Article  Google Scholar 

  • Zollo, A., Iannaccone, G., Lancieri, M., Cantore, L., Convertito, V., Emolo, A., et al. (2009). Earthquake early warning system in southern Italy: Methodologies and performance evaluation. Geophysical Research Letters, 36(5).

  • Zollo, A., Lancieri, M., & Nielsen, S. (2006). Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records. Geophysical Research Letters, 33(23).

Download references

Acknowledgements

This research is supported by the University of Tehran (grant number 28950/1/06) and the International Center for Theoretical Physics under the ICTP-Regione Friuli-Venezia Giulia program. Habib Rahimi also Thanks for the support from the International Center for Theoretical Physics (ICTP) during the two monthly visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Rahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, A., Fard, R.A., Rahimi, H. et al. Estimation of τc, τmaxc and Pd, Earthquake Early Warning Parameters, for Northwest of Iran. Pure Appl. Geophys. 179, 935–948 (2022). https://doi.org/10.1007/s00024-022-02957-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02957-6

Keywords

Navigation