Skip to main content
Log in

ENSO Signal on Subseasonal Precipitation Distribution and Soil Moisture Response in the Argentine Pampas

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Climate services provide information on El Niño-Southern Oscillation (ENSO) evolution and predicted seasonal precipitation, broadly used by decision makers from the agriculture sector. However, soil moisture participates in a more complex soil–atmosphere interaction at subseasonal scale. This work aims to identify the ENSO signal on subseasonal precipitation indices and to assess soil moisture response during austral spring–summer over the southern Argentine Pampas. From daily precipitation, 16 indices were analyzed, and the temperature vegetation dryness index (TVDI) was computed as representative of soil moisture availability. In general, the different precipitation indices presented coherence with wetter (drier) climate conditions under the El Niño (La Niña) phase. A strong signal was found for precipitation frequency in November and accumulation in December, whereas reversal and a weak signal was observed during January, crucial for summer crops. The analysis of soil–moisture interaction suggests that positive precipitation anomalies during El Niño can be reinforced by high soil moisture stored in previous months (e.g., during El Niño 2002–2003). The drying process increases in soils with low water retention capacity, producing a spatially heterogeneous impact (e.g., El Niño 2009–2010). The dry pattern expected for La Niña events was observed in 2007–2008, affecting regions with high water retention and productivity. In addition, long wet spells presented a stronger influence in these regions. Owing to the spatial and temporal heterogeneity observed at subseasonal scale, this study suggests the need for the joint analysis of atmospheric variables and soil moisture content for medium-term agricultural planning in the context of ENSO events in the southern Argentine Pampas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Precipitation data used in the study were provided by the National Weather Service (Argentina) and the National Institute for Agricultural Technology.

Code availability

Calculations were made with custom codes.

References

  • Andreoli, R. V., de Oliveira, S. S., Kayano, M. T., Viegas, J., de Souza, R. A. F., & Candido, L. A. (2017). The influence of different El Niño types on the South American rainfall. International Journal of Climatology, 37(3), 1374–1390.

    Google Scholar 

  • Barreiro, M. (2010). Influence of ENSO and the South Atlantic Ocean on climate predictability over southeastern South America. Climate Dynamics, 35, 1493–1508.

    Google Scholar 

  • Bert, F., Satorre, E., Ruiz Toranzo, F., & Podestá, G. (2006). Climatic information and decision-making in maize crop production systems of the Argentinean Pampas. Agricultural Systems, 88(2), 180–204. https://doi.org/10.1016/jagsy.2005.03.007

    Article  Google Scholar 

  • Bohn, V., Rivas, R., Varni, M., & Piccolo, C. (2020). Using SPEI in predicting water table dynamics in Argentinian plains. Environmental Earth Sciences Journal, 79(19), 1–6.

    Google Scholar 

  • Boulanger, J. P., Leloup, J., Penalba, O., Rusticucci, M., Lafon, F., & Vargas, W. (2005). Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Climate Dynamics, 24, 393–413.

    Google Scholar 

  • Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R., Taschetto, A. S., Garreaud, R. D., Boris Dewitte, B., Poveda, G., Ham, Y. G., Santoso, A., Benjamin Ng, B., Anderson, W., Wang, G., Geng, T., Jo, H. S., Marengo, J., Alves, L., Osman, M., Li, S., & Vera, C. (2020). Climate impacts of the El Niño-Southern Oscillation on South America. Nature Reviews Earth and Environment, 1(4), 215–231.

    Google Scholar 

  • Camilloni, I., & Barros, V. (2000). The Parana river response to El Nino 1982–83 and 1997–98 events. Journal of Hydrometeorology, 1(5), 412–430.

    Google Scholar 

  • Carlson, T. N., & Petropoulos, G. P. (2019). A new method for estimating of evapotranspiration and surface soil moisture from optical and thermal infrared measurements: the simplified triangle. International Journal of Remote Sensing, 4, 7716–7729.

    Google Scholar 

  • Chan, S. C., Behera, S. K., & Yamagata, T. (2008). Indian Ocean dipole influence on South American rainfall. Geophysical Research Letters, 35(14), 15.

    Google Scholar 

  • Compagnucci, R., & Vargas, W. (1998). Inter-annual variability of the Cuyoriverstreamflow in the Argentinean Andean mountains and ENSO events. International Journal of Climatology, 18, 1593–1609.

    Google Scholar 

  • Degano, M., Rivas, R., Carmona, F., Niclòs, R., & Sánchez, J. M. (2020). Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region. Egyptian Journal of Remote Sensing and Space Sciences, 24, 319–328.

    Google Scholar 

  • Dirmeyer, P. A., Halder, S., & Bombardi, R. (2018). On the harvest of predictability from land states in a global forecast model. Journal of Geophysical Research: Atmospheres, 123(23), 13–111.

    Google Scholar 

  • Garreaud, R. D., Vuille, M., Compagnucci, R., & Marengo, J. (2009). Present-day south american climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3–4), 180–195.

    Google Scholar 

  • Grimm, A. M., Barros, V. R., & Doyle, M. E. (2000). Climate variability in Southern South America associated with El Niño and La Niña events. Journal of Climate, 13, 35–58.

    Google Scholar 

  • Grimm, A. M., Pal, J. S., & Giorgi, F. (2007). Connection between spring conditions and peak summer monsoon rainfall in South America: Role of soil moisture, surface temperature, and topography in eastern Brazil. Journal of Climate, 20(24), 5929–5945.

    Google Scholar 

  • Grimm, A. M., & Tedeschi, R. G. (2009). ENSO and extreme rainfall events in South America. Journal of Climate, 22, 1589–1609.

    Google Scholar 

  • Hill, K. J., Taschetto, A. S., & England, M. H. (2009). South American rainfall impacts associated with inter-El Niño variations. Geophysical Research Letters. https://doi.org/10.1029/2009GL040164

    Article  Google Scholar 

  • Holzman, M. E., & Rivas, R. E. (2016). Early maize yield forecasting from remotely sensed temperature/vegetation index measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 507–519.

    Google Scholar 

  • Holzman, M. E., Rivas, R., & Bayala, M. (2014a). Subsurface soil moisture estimation by VI-LST method. IEEE Geoscience and Remote Sensing Letters, 11(11), 1951–1955.

    Google Scholar 

  • Holzman, M. E., Rivas, R., & Piccolo, M. C. (2014b). Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28, 181–192.

    Google Scholar 

  • Huang, J., Chen, X., Xue, Y., Lin, J., & Zhang, J. (2017). Changing characteristics of wet/dry spells during 1961–2008 in Sichuan province, southwest China. Theoretical and Applied Climatology, 127(1–2), 129–141.

    Google Scholar 

  • Iacovone, M. F., Pántano, V. C., & Penalba, O. C. (2020). Consecutive dry and wet days over South America and their association with ENSO events, in CMIP5 simulations. Theoretical and Applied Climatology, 142, 791–804.

    Google Scholar 

  • Kayano, M. T., & Moura, A. D. (2018). O El Niño de 1982–83 e a precipitação sobre a América do Sul. Brazilian Journal of Geophysics, 4(2), 201–214.

    Google Scholar 

  • Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A., Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C. T., Guo, Z., Jeong, J.-H., Lawrence, D. M., Lee, W.-S., Li, Z., Luo, L., Malyshev, S., Merryfield, W. J., Seneviratne, S. I., & Wood, E. F. (2010). Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophysical Research Letters, 37, L02402.

    Google Scholar 

  • Letson, D., Llovet, I., Podestá, G., Royce, F., Brescia, V., Lema, D., & Parellada, G. (2001). User perspectives of climate forecasts: Crop producers in Pergamino, Argentina. Climate Research, 19(1), 57–67.

    Google Scholar 

  • Liu, H. Q., & Huete, A. R. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457–465.

    Google Scholar 

  • Mallick, K., Battacharya, B. K., & Patel, N. K. (2009). Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agricultural Meteorology, 149(8), 1327–1342.

    Google Scholar 

  • Meehl, G. A., Richter, J. H., Teng, H., Capotondi, A., Cobb, K., Doblas-Reyes, F., Donat, M. G., England, M. H., Fyfe, J. C., Han, W., Kim, H., Kirtman, B. P., Kushnir, Y., Lovenduski, N., Mann, M. E., Merryfield, W. J., Nieves, V., Pegion, K., Rosenbloom, N., & Xie, S. P. (2021). Initialized Earth System prediction from subseasonal to decadal timescales. Nature Reviews Earth and Environment, 2, 340–357.

    Google Scholar 

  • Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49, 246–263.

    Google Scholar 

  • Nieto, H. (2018). Validation and scale dependencies of the triangle method for the evaporative fraction estimation over heterogeneous areas. Remote Sensing of Environment, 152, 493–511.

    Google Scholar 

  • Olivera Rodriguez, P., Holzman, M., Rivas, R., Degano, F., Bayala, M., & Faramiñán, A. (2020). Spatial variability of the green water footprint using a medium- resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.142963

    Article  Google Scholar 

  • Pántano, V., Penalba, O., Spescha, L., & Murphy, G. (2017). Assessing how accumulated precipitation and long dry sequences impact the soil water storage. International Journal of Climatology, 37, 4316–4326.

    Google Scholar 

  • Penalba, O. C., Beltran, A., & Messina, C. (2005). Monthly rainfall in centraleastern Argentina and ENSO: a comparative study of rainfall forecast methodologies. Revista Brasilera De Agrometeorología, 13(2), 49–61.

    Google Scholar 

  • Penalba, O. C., & Llano, M. P. (2008). Contribución al estudio de las secuencias secas en la zona agropecuaria de Argentina. Meteorologica, 33(1–2), 51–64.

    Google Scholar 

  • Penalba, O. C., Pántano, V. C., Spescha, L. B., & Murphy, G. M. (2019). El Niño-Southern Oscillation incidence over long dry sequences and their impact on soil water storage in Argentina. International Journal of Climatology, 39(4), 2362–2374.

    Google Scholar 

  • Penalba, O. C., Poggi, M. M., Bettolli, M. L. (2015). Predictability of summer daily extreme precipitation in Central-Eastern Argentina. 11th meeting of the international conference on southern hemisphere meteorology and oceanography. Santiago de Chile, Chile

  • Penalba, O. C., & Rivera, J. A. (2016). Precipitation response to El Niño/La Niña events in Southern South America–emphasis in regional drought occurrences. Advances in Geosciences, 42, 1–14.

    Google Scholar 

  • Penalba, O. C., Rivera, J. A., & Pántano, V. C. (2014). The CLARIS LPB database: Constructing a long-term daily hydrometeorological dataset for La Plata Basin, southern South America. Geoscience Data Journal, 1, 20–29.

    Google Scholar 

  • Podesta, G., Letson, D., Messina, C., Royce, F., Ferreyra, R. A., Jones, J., Hansen, J., Llovet, I., Grondona, M., & O’Brien, J. J. (2002). Use of ENSO-related climate information in agricultural decision making in Argentina: A pilot experience. Agricultural Systems, 74(3), 371–392.

    Google Scholar 

  • Rivas, R., & Caselles, V. (2004). A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sensing of Environment, 93, 68–76.

    Google Scholar 

  • Robledo, F., Vera, C., & Penalba, O. C. (2016). Influence of the large-scale climate variability on daily rainfall extremes over Argentina. International Journal of Climatology, 36, 412–423.

    Google Scholar 

  • Robledo, F., Vera, C., & Penalba, O. (2020). Multi-scale features of the co-variability between global sea surface temperature anomalies and daily extreme rainfall in Argentina. International Journal of Climatology. https://doi.org/10.1002/joc.6462

    Article  Google Scholar 

  • Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the suface temperature/vegetation index space for the assessment of surface moisture stress. Remote Sensing of Environment, 79, 213–224.

    Google Scholar 

  • Santoso, A., Mcphaden, M. J., & Cai, W. (2017). The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Reviews of Geophysics, 55(4), 1079–1129.

    Google Scholar 

  • Scardilli, A. S., Llano, M. P., & Vargas, W. M. (2015). Temporal analysis of precipitation and rain spells in Argentinian centenary reference stations. Theoretical and Applied Climatology, 127, 339–360. https://doi.org/10.1007/s00704-015-1631-7

    Article  Google Scholar 

  • Silvestri, G. E., & Vera, C. S. (2003). Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophysical Research Letters. https://doi.org/10.1029/2003GL018277

    Article  Google Scholar 

  • Sörensson, A. A., & Menéndez, C. G. (2011). Summer soil–precipitation coupling in South America. Tellus A, 63(1), 56–68.

    Google Scholar 

  • Vargas, W. M., Naumann, G., & Minetti, J. L. (2011). Dry spells in the River Plata Basin: An approximation of the diagnosis of droughts using daily data. Theoretical and Applied Climatology, 104, 159–173.

    Google Scholar 

  • Vargas, W., Penalba, O., & Minetti, J. (1999). Las precipitaciones mensuales en zonas de la Argentina y el ENOS. Un enfoque hacia problemas de decisión. Meteorology, 24, 1–22.

    Google Scholar 

  • Vitart, F., Robertson, A. W., & Anderson, D. L. T. (2012). Subseasonal to Seasonal Prediction Project: Bridging the gap between weather and climate. Bulletin of the World Meteorological Organization, 61(2), 23.

    Google Scholar 

  • Wang, C., Qi, S., Niu, Z., & Wang, J. (2004). Evaluating soil moisture status in China using the temperature-vegetation dryness index (TVDI). Canadian Journal of Remote Sensing, 30(5), 671–679.

    Google Scholar 

  • Waple, A. M., & Lawrimore, J. H. (2003). State of the climate in 2002. Bulletin of the American Meteorological Society, 84(6), S1–S68.

    Google Scholar 

  • Zolina, O., Simmer, C., Gulev, S. K., & Kollet, S. (2010). Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophysical Research Letters. https://doi.org/10.1029/2010GL042468

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the FONARSEC FITS MAyCC19/13; UBACyT 20020170100357BA y PICT2018/03589 projects.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanesa C. Pántano.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding the publication of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pántano, V.C., Holzman, M.E., Penalba, O.C. et al. ENSO Signal on Subseasonal Precipitation Distribution and Soil Moisture Response in the Argentine Pampas. Pure Appl. Geophys. 179, 879–896 (2022). https://doi.org/10.1007/s00024-022-02949-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02949-6

Keywords

Navigation