Skip to main content
Log in

Stress Transfer and Migration of Earthquakes from the Western Pacific Subduction Zone Toward the Asian Continent

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this paper, we explore the Western Pacific subduction impact on the geodynamics of the Asian continent. The data on migration of slow strain and earthquakes from the Nankai, Japan and Kuril-Kamchatka segments of the Western Pacific subduction zone deep into mainland Asia are analyzed. The calculations performed on five profiles, crossing the Kuril Islands, the Japanese Archipelago and Sakhalin Island toward the Asian continent, have revealed the transverse migration of earthquakes from the Japan–Kuril-Kamchatka subduction zone. The velocities of hypocenter migration of M ≥ 4.5 earthquakes from the Kuril-Kamchatka Trench via northern and central Sakhalin vary from 6 to 17 km/year, on average, at different depths. The profiles crossing the islands of Hokkaido and Sakhalin show the M ≥ 4.earthquake migration from the Kuril and Japan trenches at velocities of 8–27 km/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, D. L. (1975). Accelerated plate tectonics. Science, 187, 1077–1079.

    Article  Google Scholar 

  • Baranov, B. V., Vikulin, A. V., & Lobkovsky, L. I. (1989). Shallow-focus seismicity in the rear of the Kuril island arc and its relationship with the largest earthquakes in the underthrusting zone. Vulkanologiya i Seismologiya, 6, 73–84. In Russian.

    Google Scholar 

  • Bott, M. H. P., & Dean, D. S. (1973). Stress diffusion from plate boundaries. Nature, 243(5406), 339–341.

    Article  Google Scholar 

  • Bykov, V. G. (2014). Sine-Gordon equation and its application to tectonic stress transfer. Journal of Seismology, 18(3), 497–510.

    Article  Google Scholar 

  • Bykov, V. G., & Merkulova, T. V. (2020). Earthquake migration and hidden faults in the Priamurye Region. Russian Journal of Pacific Geology, 14(4), 326–339.

    Article  Google Scholar 

  • Bykov, V. G., & Trofimenko, S. V. (2016). Slow strain waves in blocky geological media from GPS and seismological observations on the Amurian plate. Nonlinear Processes in Geophysics, 23(6), 467–475.

    Article  Google Scholar 

  • Dragoni, M., Bonafede, M., & Boschi, E. (1982). Stress relaxation in the earth and seismic activity. Rivista Del Nuovo Cimento, 5(2), 1–34.

    Article  Google Scholar 

  • Earthquakes in Northern Eurasia 2005. (2011). Obninsk: GS RAS. p 492. (In Russian).

  • Earthquakes of Russia in 2004. (2007). Obninsk: GS RAS. p. 140. (In Russian).

  • Elsasser, W. M. (1969). Convection and stress propagation in the upper mantle. In S. K. Runcorn (Ed.), The Application of Modern Physics to the Earth and Planetary Interiors (pp. 223–246). N.Y.: Willey.

    Google Scholar 

  • Harada, M., Furuzawa, T., Teraishi, M., & Ohya, F. (2003). Temporal and spatial correlations of the strain field in tectonic active region, southern Kyusyu, Japan. Journal of Geodynamics, 35(4–5), 471–481.

    Article  Google Scholar 

  • Hirose, F., Maeda, K., & Yoshida, Y. (2019). Maximum magnitude of subduction earthquakes along the Japan–Kuril-Kamchatka trench estimated from seismic moment conservation. Geophysical Journal International, 219, 1590–1612.

    Article  Google Scholar 

  • Ishii, H., Sato, T., Tachibana, K., Hashimoto, K., Murakami, E., Mishina, M., Miura, S., Sato, K., & Takagi, A. (1983). Crustal strain, crustal stress and microearthquake activity in the northeastern Japan arc. Tectonophysics, 97(1–4), 217–230.

    Article  Google Scholar 

  • Ishii, H., Sato, T., & Takagi, A. (1978). Characteristics of strain migration in the northeastern Japanese Arc (I)—Propagation characteristics. Science Reports of the Tohoku University Series 5 Geophysics, 25(2), 83–90.

    Google Scholar 

  • Ishii, H., Sato, T., & Takagi, A. (1980). Characteristics of strain migration in the northeastern Japanese arc (II)—Amplitude characteristics. Journal of the Geodemic Society of Japan, 26(1), 17–25.

    Google Scholar 

  • Ito, T., & Hashimoto, M. (2001). Migrating crustal deformation from GEONET observations. Eos, Transactions of the American Geophysical Union, 82(47), F265–F265. Abstract G31A–0122.

    Google Scholar 

  • Kasahara, K. (1973). Earthquake fault studies in Japan. Philosophical Transactions of the Royal Society, A, 274, 287–296.

    Google Scholar 

  • Kasahara, K. (1979). Migration of crustal deformation. Tectonophysics, 52(1–4), 329–341.

    Article  Google Scholar 

  • Kuznetsov, I. V., & Keilis-Borok, V. I. (1997). The interrelation of earthquakes of the Pacific seismic belt. Doklady Akadeii Nauk, 355(3), 389–393. In Russian.

    Google Scholar 

  • Lehner, F. K., Li, V. C., & Rice, R. (1981). Stress diffusion along rupturing boundaries. Journal of Geophysical Research, 86(B7), 6155–6169.

    Article  Google Scholar 

  • Liu, M., Stein, S., & Wang, H. (2011). 2000 years of migrating earthquakes in North China: How earthquakes in midcontinents differ from those at plate boundaries. Lithosphere, 3, 128–132.

    Article  Google Scholar 

  • Mino, K. (1988). Migration of great earthquake along the subduction zone of Japan Archipelago. Journal of the Seismological Society of Japan, 41(3), 375–380.

    Google Scholar 

  • Miura, S., Ishii, H., & Takagi, A. (1989). Migration of vertical deformations and coupling of island arc plate and subducting plate. In S. C. Cohen & P. Vanííek (Eds.), Slow deformation and transmission of stress in the earth, Geophysical monograph series (Vol. 49, pp. 125–138). American Geophysical Union.

    Google Scholar 

  • Mogi, K. (1968). Migration of seismic activity. Bulletin of the Earthquake Research Institute, University of Tokyo, 46, 53–74.

    Google Scholar 

  • Mogi, K. (1973). Relationship between shallow and deep seismicity in the western Pacific region. Tectonophysics, 17(1–2), 1–22.

    Article  Google Scholar 

  • Molchanov, O. A. (2011). Underlying mechanism of precursory activity from analysis of upward earthquake migration. Natural Hazards and Earth System Science, 11, 135–143.

    Article  Google Scholar 

  • Molchanov, O. A., & Uyeda, S. (2009). Upward migration of earthquake hypocenters in Japan, Kurile-Kamchatka and Sunda subduction zones. Physics and Chemistry of the Earth, 34(6–7), 423–430.

    Article  Google Scholar 

  • Novopashina, A. V., & Lukhneva, O. F. (2020). Methodical approach to isolation of seismic activity migration episodes of the northeastern Baikal rift system (Russia). Episodes, 43(4), 947–959.

    Article  Google Scholar 

  • Novopashina, A. V., & San’kov, V. A. (2018). Migrations of seismic energy released in various geodynamic conditions. Geodynamics and Tectonophysic, 9(1), 139–163. In Russian.

    Article  Google Scholar 

  • Pollitz, F. F., Bürgmann, R., & Romanowicz, B. (1998). Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes. Science, 280(5367), 1245–1249.

    Article  Google Scholar 

  • Press, F., & Allen, C. (1995). Patterns of seismic release in the southern California region. Journal of Geophysical Research, 100(4), 6421–6430.

    Article  Google Scholar 

  • Rice, J. R. (1980). The mechanics of earthquake rupture. In A. M. Dziewonski & E. Boschi (Eds.), Physics of the Earth’s interior (pp. 555–649). Italian Physical Society.

    Google Scholar 

  • Ruzhich, V. V., Kochyaryan, G. G., & Levina, E. A. (2016). Estimated geodynamic impact from zones of collision and subduction on the seismotectonic regime in the Baikal Rift. Geodynamics and Tectonophysics, 7(3), 383–406. In Russian.

    Article  Google Scholar 

  • Rydelek, P. A., & Sacks, I. S. (1988). Asthenospheric viscosity inferred from correlated land-sea earthquakes in northeast Japan. Nature, 336, 234–237.

    Article  Google Scholar 

  • Saprygin, S. M., Vasilenko, N. F., & Soloviev, V. N. (1997). Propagation of the wave of tectonic stresses through the Eurasian plate in 1978–1983. Geologiya i Geofizika, 38(3), 701–709. In Russian.

    Google Scholar 

  • Seno, T. (1979). Pattern of intraplate seismicity in southwest Japan before and after great interplate earthquakes. Tectonophysics, 57, 267–283.

    Article  Google Scholar 

  • Sherman, S. I. (2013). Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere. Geodynamics and Tectonophysics, 4(2), 83–117. In Russian.

    Article  Google Scholar 

  • Stepashko, A. A. (2010). Deep roots of seismotectonics in the Far East. The Sakhalin zone. Russian Journal of Pacific Geology, 4(3), 228–241.

    Article  Google Scholar 

  • Stepashko, A. A. (2011a). Deep roots of seismotectonics in the Far East. The Amur River and Primorye zones. Russian Journal of Pacific Geology, 5(1), 1–12.

    Article  Google Scholar 

  • Stepashko, A. A. (2011b). Seismodynamics and deep internal origin of the North China zone of strong earthquakes. Geodynamics and Tectonophysics, 2(4), 341–355. In Russian.

    Article  Google Scholar 

  • Stepashko, A. A., & Merkulova, T. V. (2017). Deep structure, genesis and seismic activation of the Bureya Orogen, Russian Far East. Russian Journal of Pacific Geology, 11, 237–250.

    Article  Google Scholar 

  • Takahashi, K., & Seno, T. (2005). Diffusion of crustal deformation from disturbances arising at plate boundaries—A case of the detachment beneath the Izu Peninsula, central Honshu, Japan. Earth, Planets and Space, 57, 935–941.

    Article  Google Scholar 

  • Trofimenko, S. V., Bykov, V. G., & Merkulova, T. V. (2017). Space-time model for migration of weak earthquakes along the northern boundary of the Amurian microplate. Journal of Seismology, 21(2), 277–286.

    Article  Google Scholar 

  • Vikulin, A. V. (1992). The largest earthquake foci migration in Kamchatka and the Northern Kuriles and their recurrence interval. Vulkanologiya i Seismologiya, 1, 46–61. In Russian.

    Google Scholar 

  • Vikulin, A. V., Akmanova, D. R., Osipova, N. A., Chebanyuk, S. V., Mikhalina, AYu., Sumakova, E. I., & Yakimova, E. V. (2009). Recurrence of large earthquakes and their foci migration along the seismic belt. Vestnik of Kamchatkan State Technical University, 10, 17–25. In Russian.

    Google Scholar 

  • Vil’kovich, E. V., & Shnirman, M. G. (1982). Waves of epicenter migration (examples and models). Vychislitel’naya Seismologiya, 14, 27–37. In Russian.

    Google Scholar 

  • Yoshida, A. (1988). Migration of seismic activity along interplate seismic belts in the Japanese Islands. Tectonophysics, 145(1–2), 87–99.

    Article  Google Scholar 

  • Žalohar, J. (2018). The omega-theory: A news physics of earthquakes (p. 558). Publishing House Elsevier.

    Google Scholar 

  • Žalohar, J., Vičič, B., Potočnik, M., Soklič, N., Komac, M., Hölscher, T., Herlec, U., & Dolenec, M. (2020). Precursory stress changes before large earthquakes; on a new physical law for earthquakes. Journal of Structural Geology, 141, 104–208.

    Article  Google Scholar 

  • Zhao, G., & Yao, L. (1995). Earthquake migration in East Asia mainland (I)—The migration of huge earthquakes and volcanic activity from West Pacific trench to the Chinese mainland. Acta Seismologica Sinica, 8(4), 541–549.

    Article  Google Scholar 

  • Zhao, G., & Yao, L. (1997). Earthquake migration in East Asia mainland (2)—Migration along seismic zones. South China Journal of Seismology, 17(1), 15–24. In Chinese with English abstract.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Guest Editors, Alexander Soloviev, D.Sci., Vladimir Kossobokov, D.Sci., and two anonymous reviewers for all the comments, which contributed to improving the manuscript.

Funding

The study was performed within the framework of the State Assignment for the Kosygin Institute of Tectonics and Geophysics, Far East Branch, Russian Academy of Sciences (AAAA-A18-118020790043-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bykov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, V.G., Merkulova, T.V. & Andreeva, M.Y. Stress Transfer and Migration of Earthquakes from the Western Pacific Subduction Zone Toward the Asian Continent. Pure Appl. Geophys. 179, 3931–3944 (2022). https://doi.org/10.1007/s00024-021-02924-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02924-7

Keywords

Navigation