Skip to main content
Log in

Tsunami Generation Efficiency of the 1994, 2006 and 2007 Kuril Islands Earthquakes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Three major Kuril Islands earthquakes (Mw = 8.3 on 4 October 1994, Mw = 8.3 on 15 November 2006 and Mw = 8.1 on 13 January 2007) generated trans-oceanic tsunamis that were recorded over the entire Pacific Ocean. The tsunami sources had significantly different geometries, which led to different impacts in the near-field and far-field zones. We used numerical models to investigate the source efficiency and resulting wave directivity of the three tsunamis. The tsunami models were validated and calibrated using field survey data from the Central Kuril Islands and deep-ocean bottom pressure records in the North Pacific. Using the full energy flux distribution, we conclude that the source of the 2007 event had the most well-defined energy flux directivity and that the tsunami energy radiation from the 1994 event was the most isotropic. Radiation patterns of each source clearly show the fraction of wave energy radiated into the open ocean, as well as that which penetrated into the Sea of Okhotsk through the Kuril Straits or was captured by the shelf and spread from the source area along the Kuril Ridge. We find a noticeable increase in the period of the leading wave emitted from the end of the elongated tsunami sources compared to the period of the waves formed in the transverse direction. The onshore-directed energy flux is shown to be a key factor controlling tsunami amplitudes at the coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baba, T., Cummins, P. R., Thio, H. K., & Tsushima, H. (2009). Validation and joint inversion of teleseismic waveforms for earthquake source models using deep ocean bottom pressure records: A case study of the 2006 Kuril megathrust earthquake. Pure and Applied Geophysics, 166(1–2), 55–76. https://doi.org/10.1007/s00024-008-0438-1

    Article  Google Scholar 

  • Baranov, B. V., Ivashchenko, A. I., & Dozorova, K. A. (2015). The Great 2006 and 2007 Kuril earthquakes, forearc segmentation and seismic activity of the Central Kuril Islands region. Pure and Applied Geophysics, 172(12), 3509–3535. https://doi.org/10.1007/s00024-015-1120-z

    Article  Google Scholar 

  • Ben-Menahem, A., & Rosenman, M. (1972). Amplitude patterns of tsunami waves from submarine earthquakes. Journal of Geophysical Research, 77(17), 3097–3128.

    Article  Google Scholar 

  • Dengler, L., Uslu, B., Barberopoulou, A., et al. (2009). The November 15, 2006 Kuril Islands-generated tsunami in Crescent City, California. Pure and Applied Geophysics, 166, 37–53.

    Article  Google Scholar 

  • Fine, I. V., Kulikov, E. A., & Cherniawsky, J. Y. (2013). Japan’s 2011 tsunami: Characteristics of wave propagation from observations and numerical modelling. Pure and Applied Geophysics, 170, 1295–1307. https://doi.org/10.1007/s00024-012-0555-8

    Article  Google Scholar 

  • Fine, I. V., Thomson, R. E., Chadwick, W. W., Jr., & Fox, C. G. (2020). Toward a universal frequency of occurrence distribution for tsunamis: Statistical analysis of a 32-year bottom pressure record at axial seamount. Geophysical Research Letters, 47(10), 1–9. https://doi.org/10.1029/2020GL087372

    Article  Google Scholar 

  • Finite fault model for 10/4/1994 earthquake with Mw = 8.3. https://earthquake.usgs.gov/earthquakes/eventpage/usp0006kdp/finite-fault. Accessed Nov 2020.

  • Fujii, Y., & Satake, K. (2008). Tsunami sources of the November 2006 and January 2007 great Kuril earthquakes. Bulletin of the Seismological Society of America, 98(3), 1559–1571. https://doi.org/10.1785/0120070221

    Article  Google Scholar 

  • Fukao, Y., & Furumoto, M. (1975). Foreshocks and multiple shocks of large earthquakes. Physics of the Earth and Planetary Interiors, 10(4), 355–368.

    Article  Google Scholar 

  • Gill, A. E. (1982). Atmosphere-ocean dynamics (p. 662). Academic Press.

    Google Scholar 

  • Gusiakov, V. K. (2014). Strongest tsunamis in the World Ocean and the problem of marine coastal security. Izvestiya, Atmospheric and Oceanic Physics, 50(5), 435–444. https://doi.org/10.1134/S0001433814050041

    Article  Google Scholar 

  • Hébert, H., Heinrich, P., Schindelé, F., & Piatanesi, A. (2001). Far-field simulation of tsunami propagation in the Pacific Ocean: Impact on the Marquesas Islands (French Polynesia). Journal of Geophysical Research: Oceans, 106(C5), 9161–9177.

    Article  Google Scholar 

  • Horrillo, J., Knight, W., & Kowalik, Z. (2008). Kuril Islands tsunami of November 2006: 2. Impact at Crescent City by local enhancement. Journal of Geophysical Research: Oceans, 113(C1), 1–12. https://doi.org/10.1029/2007JC004404

    Article  Google Scholar 

  • Ivanova, A. A., Kulikov, E. A., & Fain, I. V. (2017). On modelling 2006, 2007 Simushir tsunamis in the central Kuril region. Fundamental and Applied Geophysics, 10(3), 56–64. In Russian.

    Google Scholar 

  • Ji, C., Wald, D. J., & Helmberger, D. V. (2002). Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92(4), 1192–1207.

    Article  Google Scholar 

  • Kajiura, K. (1970). Tsunami source, energy and the directivity of wave radiation. Bulletin of the Earthquake Research Institute, the University of Tokyo, 48, 835–869.

    Google Scholar 

  • Kajiura, K. (1972). The directivity of energy radiation of the tsunami generated in the vicinity of a continental shelf. Journal of Oceanography, 28(6), 260–277.

    Article  Google Scholar 

  • Kajiura, K. (1981). Tsunami energy in relation to parameters of the earthquake fault. Bulletin of the Earthquake Research Institute, 56, 415–440.

    Google Scholar 

  • Kânoğlu, U., Titov, V., Bernard, E., & Synolakis, C. (2015). Tsunamis: Bridging science, engineering and society. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 373(2053), 20140369. https://doi.org/10.1098/rsta.2014.0369

    Article  Google Scholar 

  • Katsumata, K. (2017). Long-term seismic quiescences and great earthquakes in and around the Japan subduction zone between 1975 and 2012. Pure and Applied Geophysics, 174, 2427–2442. https://doi.org/10.1007/s00024-016-1415-8

    Article  Google Scholar 

  • Kerr, R. A. (2005). Model shows islands muted tsunami after latest Indonesian quake. Science, 308(5720), 341–342.

    Article  Google Scholar 

  • Koshimura, S., Hayashi, Y., Munemoto, K., & Imamura, F. (2008). Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami. Geophysical Research Letters, 35(2), 1–6. https://doi.org/10.1029/2007GL032129

    Article  Google Scholar 

  • Kowalik, Z., Knight, W., Logan, T., & Whitmore, P. (2007). The tsunami of 26 December, 2004: Numerical modelling and energy considerations. Pure and Applied Geophysics, 164(2–3), 379–393. https://doi.org/10.1007/s00024-006-0162-7

    Article  Google Scholar 

  • Kowalik, Z., Horrillo, J., Knight, W., & Logan, T. (2008). Kuril Islands tsunami of November 2006: 1. Impact at Crescent City by distant scattering. Journal of Geophysical Research: Oceans, 113(C1), 1–11. https://doi.org/10.1029/2007JC004402

    Article  Google Scholar 

  • Kulikov, E. A., Fine, I. V., & Yakovenko, O. I. (2014). Numerical modeling of the long surface waves scattering for the 2011 Japan tsunami: Case study. Izvestiya, Atmospheric and Oceanic Physics, 50(5), 498–507. https://doi.org/10.1134/S0001433814050053

    Article  Google Scholar 

  • Laverov, N. P., Lobkovsky, L. I., Levin, B. W., et al. (2009). The Kuril tsunamis of November 15, 2006, and January 13, 2007: Two trans-Pacific events. Doklady Earth Sciences, 426(1), 658–664. https://doi.org/10.1134/S1028334X09040333

    Article  Google Scholar 

  • Levin, B. W., Kaistrenko, V. M., Rybin, A. V., et al. (2008). Manifestations of the tsunami on November 15, 2006, on the Central Kuril Islands and results of the runup heights modelling. Doklady Earth Sciences, 419(1), 335–338. https://doi.org/10.1134/S1028334X08020335

    Article  Google Scholar 

  • Lobkovsky, L. I., Kulikov, E. A., Rabinovich, A. B., et al. (2008). Earthquakes and tsunamis (November 15, 2006, and January 13, 2007) in the Central Kuril Islands region: A justified prediction. Doklady Earth Sciences, 419(1), 320–324. https://doi.org/10.1134/S1028334X0802030X

    Article  Google Scholar 

  • Lobkovsky, L. I., Rabinovich, A. B., Kulikov, E. A., et al. (2009). The Kuril Earthquakes and tsunamis of November 15, 2006, and January 13, 2007: Observations, analysis, and numerical modelling. Oceanology, 49(2), 166–181. https://doi.org/10.1134/S0001437009020027

    Article  Google Scholar 

  • MacInnes, B. T., Pinegina, T. K., Bourgeois, J., et al. (2009). Field survey and geological effects of the 15 November 2006 Kuril tsunami in the middle Kuril Islands. Pure and Applied Geophysics, 166, 9–36. https://doi.org/10.1007/s00024-008-0428-3

    Article  Google Scholar 

  • Miyoshi, H. (1955). Directivity of the recent tsunamis. Journal of the Oceanographical Society of Japan, 11(4), 151–155.

    Article  Google Scholar 

  • Mofjeld, H. O., Titov, V. V., González, F. I., & Newman, J. C. (2001). Tsunami scattering provinces in the Pacific Ocean. Geophysical Research Letters, 28(2), 335–337.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Article  Google Scholar 

  • Okal, E. A. (2003). Normal modes energetics for far-field tsunamis generated by dislocations and landslides. Pure and Applied Geophysics, 160, 2189–2221. https://doi.org/10.1007/s00024-003-2426-9

    Article  Google Scholar 

  • Rabinovich, A. B., Lobkovsky, L. I., Fine, I. V., et al. (2008). Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007. Advances in Geosciences, 14, 105–116.

    Article  Google Scholar 

  • Rabinovich, A. B., Candella, R. N., & Thomson, R. E. (2013). The open ocean energy decay of three recent trans-Pacific tsunamis. Geophysical Research Letters, 40(12), 3157–3162. https://doi.org/10.1002/grl.50625

    Article  Google Scholar 

  • Rabinovich, A. B., Titov, V. V., Moore, C. W., & Eblé, M. C. (2017). The 2004 Sumatra tsunami in the southeastern Pacific Ocean: New global insight from observations and modeling. Journal of Geophysical Research: Oceans, 122(10), 7992–8019. https://doi.org/10.1002/2017JC013078

    Article  Google Scholar 

  • Saloor, N., & Okal, E. A. (2018). Extension of the energy-to-moment parameter Θ to intermediate and deep earthquakes. Physics of the Earth and Planetary Interiors, 274, 37–48.

    Article  Google Scholar 

  • Satake, K. (1988). Effects of bathymetry on tsunami propagation: Application of ray tracing to tsunamis. Pure and Applied Geophysics, 126(1), 27–36.

    Article  Google Scholar 

  • Satake, K., & Tanioka, Y. (1999). Sources of tsunami and tsunamigenic earthquakes in subduction zones. Pure and Applied Geophysics, 154(3–4), 467–483.

    Article  Google Scholar 

  • Shevchenko, G. V., Loskutov, A. V., & Kaistrenko, V. M. (2018). A new map of tsunami hazard for the South Kuril Islands. Geosystems of Transition Zones, 2(3), 225–238.

    Article  Google Scholar 

  • Stephenson, F. E., & Rabinovich, A. B. (2009). Tsunamis on the Pacific coast of Canada recorded in 1994–2007. Pure and Applied Geophysics, 166(1–2), 177–210. https://doi.org/10.1007/s00024-008-0440-7

    Article  Google Scholar 

  • Tang, L., Titov, V. V., Bernard, E. N., et al. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research: Oceans, 117, C08008. https://doi.org/10.1029/2011JC007635

    Article  Google Scholar 

  • Tanioka, Y., Ruff, L., & Satake, K. (1995). The great Kurile earthquake of October 4, 1994 tore the slab. Geophysical Research Letters, 22(13), 1661–1664.

    Article  Google Scholar 

  • Tanioka, Y., Hasegawa, Y., & Kuwayama, T. (2008). Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes. Advances in Geosciences, 14, 129–134.

    Article  Google Scholar 

  • Titov, V. V., & Synolakis, C. E. (1997). Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophysical Research Letters, 24(11), 1315–1318.

    Article  Google Scholar 

  • Titov, V. V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., & Gonzalez, F. J. (2005). The global reach of the 26 December 2004 Sumatra tsunami. Science, 309, 2045–2048.

    Article  Google Scholar 

  • Titov, V., Song, Y. T., Tang, L., Bernard, E. N., Bar-Sever, Y., & Wei, Y. (2016). Consistent estimates of tsunami energy show promise for improved early warning. Pure and Applied Geophysics, 173(12), 3863–3880. https://doi.org/10.1007/978-3-319-55480-8_11

    Article  Google Scholar 

  • Vladimirova, I. S., Lobkovsky, L., Gabsatarov, Y., et al. (2020). Patterns of the seismic cycle in the Kuril Island Arc from GPS observations. Pure and Applied Geophysics, 177, 3599–3617. https://doi.org/10.1007/s00024-020-02495-z

    Article  Google Scholar 

  • Wang, K., Thomson, R. E., Rabinovich, A. B., Fine, I. V., & Insua, T. L. (2020). The 2018 Alaska-Kodiak Tsunami off the West Coast of North America: A rare mid-plate tsunamigenic event. Pure and Applied Geophysics, 173, 1347–1378. https://doi.org/10.1007/s00024-020-02427-x

    Article  Google Scholar 

  • Watada, S., Kusumoto, S., & Satake, K. (2014). Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research: Solid Earth, 119(5), 4287–4310. https://doi.org/10.1002/2013JB010841

    Article  Google Scholar 

  • Woods, M. T., & Okal, E. A. (1987). Effect of variable bathymetry on the amplitude of teleseismic tsunamis: A ray-tracing experiment. Geophysical Research Letters, 14, 765–768.

    Article  Google Scholar 

  • Yeh, H., Titov, V., Gusiakov, V., et al. (1995). The 1994 Shikotan earthquake tsunamis. Pure and Applied Geophysics, 144(3–4), 855–874.

    Article  Google Scholar 

Download references

Acknowledgements

This study work was supported by the Russian State Assignment of IORAS #0128-2021-0004. We also thank Drs. Isaac Fine and Richard Thomson for their internal reviews and editing.

Funding

This study work was supported by the Russian State Assignment of IORAS #0128-2021-0004.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to A. A. Ivanova.

Ethics declarations

Conflicts of interest

Not applicable.

Ethics approval

Not applicable.

Availability of data and material

Open access.

Code availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, E.A., Ivanova, A.A. Tsunami Generation Efficiency of the 1994, 2006 and 2007 Kuril Islands Earthquakes. Pure Appl. Geophys. 178, 4921–4939 (2021). https://doi.org/10.1007/s00024-021-02887-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02887-9

Keywords

Navigation